Analytical and Bioanalytical Chemistry

, Volume 389, Issue 5, pp 1421–1428 | Cite as

Fourier transform ion cyclotron resonance mass spectrometry of covalent adducts of proteins and 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation

  • Navin Rauniyar
  • Stanley M. StevensJr
  • Laszlo Prokai
Original Paper


Covalent adduction of the model protein apomyoglobin by 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation, was characterized by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The high mass resolving power and mass measurement accuracy of the instrument facilitated a detailed compositional analysis of the complex reaction product without the need for deconvolution and transformation to clearly show the pattern of adduction and component molecular weights. Our study has also demonstrated the value of electron capture dissociation over collision-induced dissociation for the tandem mass spectrometric determination of site modification for the 4-hydroxy-2-nonenal adduct of oxidized insulin B chain as an example.


FTICR allowed characterization of 4-hydroxy-2-nonenal (HNE)-modified apomyoglobin (an expanded spectrum of the +15 charge state is shown)


Fourier transform ion cyclotron resonance mass spectrometry Electrospray ionization Protein carbonylation 4-Hydroxy-2-nonenal Electron capture dissociation 


  1. 1.
    Shacter E (2000) Drug Metab Rev 32:307–326CrossRefGoogle Scholar
  2. 2.
    Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) J Neurochem 82:1524–1532CrossRefGoogle Scholar
  3. 3.
    Fenaille F, Guy PA, Tabet J (2003) J Am Soc Mass Spectrom 14:215–226CrossRefGoogle Scholar
  4. 4.
    Esterbauer H, Zollner H (1989) Free Rad Biol Med 7:197–203CrossRefGoogle Scholar
  5. 5.
    Poli G, Schaur RJ (2000) IUBMB Life 50:315–321CrossRefGoogle Scholar
  6. 6.
    Uchida K, Stadtman ER (1992) Proc Natl Acad Sci USA 89:4544–4548CrossRefGoogle Scholar
  7. 7.
    Musatov A, Carroll CA, Liu YC, Henderson GI, Weintraub ST, Robinson NC (2002) Biochemistry 41:8212–8220CrossRefGoogle Scholar
  8. 8.
    Bolgar MS, Yang CY, Gaskell SJ (1996) J Biol Chem 271:27999–28001CrossRefGoogle Scholar
  9. 9.
    Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA (2002) J Biol Chem 277:50693–50702CrossRefGoogle Scholar
  10. 10.
    Crabb JW, O’Neil J, Miyagi M, West K, Hoff HF (2002) Protein Sci 11:831–840CrossRefGoogle Scholar
  11. 11.
    Ishii T, Tatsuda E, Kumazawa S, Nakayama T, Uchida K (2003) Biochemistry 42:3474–3480CrossRefGoogle Scholar
  12. 12.
    Szweda LI, Uchida K, Tsai L, Stadtman ER (1993) J Biol Chem 268:3342–3347Google Scholar
  13. 13.
    Doorn JA, Hurley TD, Petersen DR (2006) Chem Res Toxicol 19:102–110CrossRefGoogle Scholar
  14. 14.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom rev 17:1–35CrossRefGoogle Scholar
  15. 15.
    Meng F, Forbes AJ, Miller LM, Kelleher NL (2005) Mass Spectrom Rev 24:126–134CrossRefGoogle Scholar
  16. 16.
    Wells JM, McLuckey SA (2005) Methods Enzymol 402:148–185CrossRefGoogle Scholar
  17. 17.
    Bolgar MS, Gaskell SJ (1996) Anal Chem 68:2325–2330CrossRefGoogle Scholar
  18. 18.
    Fenaille F, Tabet JC, Guy PA (2002) Anal Chem 74:6298–6304CrossRefGoogle Scholar
  19. 19.
    Hagen JJ, Monnig CA (1994) Anal Chem 66:1877–1883CrossRefGoogle Scholar
  20. 20.
    Bakhtiar R, Guan Z (2006) Biotechnol Lett 28:1047–1059CrossRefGoogle Scholar
  21. 21.
    Berlett B, Stadtman E (1997) J Biol Chem 272:20313–20316CrossRefGoogle Scholar
  22. 22.
    Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Trends Mol Medicine 9:169–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Navin Rauniyar
    • 1
  • Stanley M. StevensJr
    • 1
  • Laszlo Prokai
    • 1
  1. 1.Department of Molecular Biology & ImmunologyUniversity of North Texas Health, Science CenterFort WorthUSA

Personalised recommendations