Skip to main content
Log in

Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two speciated isotope dilution (SID) approaches consisting of a single-spike (SS) method and a double-spike (DS) method including a reaction/transformation model for the correction of inadvertent transformations affecting mercury species were compared in terms of accuracy, method performance, and robustness for the simultaneous determination of methylmercury (MeHg), inorganic mercury (iHg), and total mercury (HgT) concentrations in five biological Standard Reference Materials (SRMs). The SRMs consisted of oyster and mussel tissue materials displaying different mercury species concentration levels and different textural/matrix properties including freeze-dried (FD) materials (SRMs 1566b, 2976, and 2977) and cryogenically prepared and stored fresh-frozen (FF) materials (SRMs 1974a, 1974b). Each sample was spiked with 201iHg (Oak Ridge National Laboratory, ORNL) and Me202Hg (Institute for Reference Materials and Measurements. IRMM-670) solutions and analyzed using alkaline microwave digestion, ethylation, and gas chromatography inductively coupled plasma mass spectrometry (GC/ICP-MS). The results obtained by the SS-SID method suggested that FF and FD materials are not always commutable for the simultaneous determination of iHg, MeHg, and HgT, due to potential transformation reactions resulting probably from the methodology and/or from the textural/matrix properties of the materials. These transformations can occasionally significantly affect mercury species concentration results obtained by SS-SID, depending on the species investigated and the materials considered. The results obtained by the DS-SID method indicated that the two classes of materials were commutable. The simultaneous and corrected concentrations of iHg, MeHg, and HgT obtained by this technique were not found to be statistically different form the certified and reference concentration together with their expanded uncertainty budgets for the five SRMs investigated, exemplifying the robustness, the accuracy, and the improved commutability of this method compared to SS-SID measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hempel M, Dutka BJ, McInnis R, Kwan KK, Liu D (1995) Analyst 120:721–724

    Article  CAS  Google Scholar 

  2. Craig PJ (1986) In: Craig PJ (ed) Organometallic compounds in the environment, principles and reactions. Longham, Essex, UK

    Google Scholar 

  3. Day RD, Vander Pol SS, Christopher SJ, Davis WC, Pugh RS, Simac KS, Roseneau DG, Becker PR (2006) Environ Sci Technol 40:659–665

    Article  CAS  Google Scholar 

  4. James WD, Zeisler R (2001) Radioanal Nucl Chem 248:233–237

    Article  CAS  Google Scholar 

  5. Wang W (2000) Int J Pharm 203:1–60

    Article  CAS  Google Scholar 

  6. Wise SA, Benner BA, Christensen RG, Koster BJ, Kurz J, Schantz MM, Zeisler R (1991) Environ Sci Technol 25:1695–1704

    Article  CAS  Google Scholar 

  7. Zeisler R, Langland JK, Harrison SH (1983) Anal Chem 55:2431–2434

    Article  CAS  Google Scholar 

  8. Shawky S, Emons H (1998) Chemosphere 36:523–535

    Article  CAS  Google Scholar 

  9. Emons H, Schladot JD, Schwuger MJ (1997) Chemosphere 34:1875–1888

    Article  CAS  Google Scholar 

  10. Donais MK, Uden PC, Schantz MM, Wise SA (1996) Anal Chem 68:3859–3866

    Article  Google Scholar 

  11. Donais MK, Saraswati R, Mackey E, Demiralp R, Porter B, Vangel M, Levenson M, Mandic V, Azemard S, Horvat M, May K, Emons H, Wise S (1997) Fresenius J Anal Chem 358:424–430

    Article  CAS  Google Scholar 

  12. Christopher SJ, Long SE, Rearick MS, Fassett JD (2001) Anal Chem 73:2190–2199

    Article  CAS  Google Scholar 

  13. Davis WC, Christopher SJ, Rebecca SP, Donard OFX, Eva AK, David P, Milena H, Gibièar D, Kljakovic-Gaspic Z, Barbara JP, Michele MS (2007) Anal Bioanal Chem 387:2335–2341

    Article  CAS  Google Scholar 

  14. Poperechna N, Heumann KG (2005) Anal Bioanal Chem 383:153–159

    Article  CAS  Google Scholar 

  15. Martin-Doimeadios RCR, Krupp E, Amouroux D, Donard OFX (2002) Anal Chem 74:2505–2512

    Article  Google Scholar 

  16. Monperrus M, Martin-Doimeadios RCR, Scancar J, Amouroux D, Donard OFX (2003) Anal Chem 75:4095–4102

    Article  CAS  Google Scholar 

  17. Yang L, Mester Z, Sturgeon RE (2003) J Anal Atom Spectrom 18:431–436

    Article  CAS  Google Scholar 

  18. Quetel CR, Snell JP, Aregbe Y, Abranko L, Jokai Z, Brunori C, Morabito R, Hagan W, Azemard S, Wyse E, Fajon V, Horvat M, Logar M, Donard OFX, Krupp E, Entwisle J, Hearn R, Schantz M, Inagaki K, Takatsu A, Grinberg P, Willlie S, Dimock B, Hintelmann H, Zhu J, Gonzalez EB, Centineo G, Alonso JEG, Sanz-Medel A, Bjorn E (2005) J Anal Atom Spectrom 20:1058–1066

    Article  CAS  Google Scholar 

  19. Demuth N, Heumann KG (2001) Anal Chem 73:4020–4027

    Article  CAS  Google Scholar 

  20. RodriguezMartin-Doimeadios RC, Krupp E, Amouroux D, Donard OFX (2002) Anal Chem 74:2505–2512

    Article  CAS  Google Scholar 

  21. Rodriguez Martin-Doimeadios RC, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Anal Chem 75:3202–3211

    Article  CAS  Google Scholar 

  22. Qvarnstrom J, Frech W (2002) J Anal Atom Spectrom 17:1486–1491

    Article  Google Scholar 

  23. Hintelmann H, Falter R, Ilgen G, Evans RD (1997) Fresenius J Anal Chem 358:363–370

    Article  CAS  Google Scholar 

  24. RodriguezMartin-Doimeadios RC, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Anal Chem 75:3202–3211

    Article  CAS  Google Scholar 

  25. Hammerschmidt CR, Fitzgerald WF (2001) Anal Chem 73:5930–5936

    Article  CAS  Google Scholar 

  26. Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC, Link DD, Bhandari S (2003) Anal Bioanal Chem 375:428–436

    CAS  Google Scholar 

  27. Rahman GMM, Kingston HM (2004) Anal Chem 76:3548–3555

    Article  CAS  Google Scholar 

  28. Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Anal Bioanal Chem 381:854–862

    Article  CAS  Google Scholar 

  29. Bloom NS, Colman JA, Barber L (1997) Fresenius J Anal Chem 358:371–377

    Article  CAS  Google Scholar 

  30. Lambertsson L, Lundberg E, Nilsson M, Frech W (2001) J Anal Atom Spectrom 16:1296–1301

    Article  CAS  Google Scholar 

  31. Rodriguez-Gonzalez P, Marchante-Gayon JM, Alonso JIG, Sanz-Medel A (2005) Spectrochim Acta B 60:151–207

    Article  Google Scholar 

  32. Rodríguez-González P, Ruiz Encinar J, Ignacio García Alonso J, Sanz-Medel A (2004) J Anal Atom Spectrom 19:685–691

    Article  Google Scholar 

  33. Qvarnstrom J, Lambertsson L, Havarinasab S, Hultman P, Frech W (2003) Anal Chem 75:4120–4124

    Article  Google Scholar 

  34. Hintelmann H, Evans RD (1997) Fresenius J Anal Chem 358:378–385

    Article  CAS  Google Scholar 

  35. Held A, Taylor PDP (1999) J Anal Atom Spectrom 14:1075–1079

    Article  CAS  Google Scholar 

  36. Jarvis KE, Gray AL, Houk RS (1992) Handbook of inductively coupled plasma mass spectometry. Vieweg Verlag, New York

    Google Scholar 

  37. Long SE, Kelly WR (2002) Anal Chem 74:1477–1483

    Article  CAS  Google Scholar 

  38. Point D, Davis WC, Christopher SJ, Ellisor MB, Pugh RS, Becker PR, Donard OFX, Porter BJ, Wise SA (2007) Anal Bioanal Chem 387:2343–2355

    Article  CAS  Google Scholar 

  39. Yang L, Sturgeon RE (2005) J Anal Atom Spectrom 20:724–729

    Article  CAS  Google Scholar 

  40. Loss RD (2001) Pure Appl Chem 75:1107–1122

    Google Scholar 

  41. Rodriguez-Gonzalez P, Alonso JIG, Sanz-Medel A (2005) J Anal Atom Spectrom 20:1076–1084

    Article  CAS  Google Scholar 

  42. Monperrus M, Garcia Alonso JI, Amouroux D, Donard OFX (2004) Ljubljana; RMZ-Material and Geoenvironment

  43. ISO (1993) Guide to the Expression of Uncertainty in Measurement

  44. EURACHEM (2000) EURACHEM/CITAC Guide

  45. Linsinger T (2005) Application note: comparison of a measurement result with the certified value, www.erm-crm.org

  46. Monperrus M, Krupp E, Amouroux D, Donard OFX, Rodriguez Martin-Doimeadios RC (2004) TrAC Trends Anal Chem 23:261–272

    Article  CAS  Google Scholar 

  47. Zeisler R, Murphy KE, Becker DA, Davis WC, Kelly WR, Long SE, Sieber JR (2006) Anal Bioanal Chem 386:1137–1151

    Article  CAS  Google Scholar 

  48. Davis WC, Vander Pol SS, Schantz MM, Long SE, Day RD, Christopher SJ (2004) J Anal Atom Spectrom 19:1546–1551

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Point.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 40.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Point, D., Davis, W.C., Garcia Alonso, J.I. et al. Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials. Anal Bioanal Chem 389, 787–798 (2007). https://doi.org/10.1007/s00216-007-1516-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1516-4

Keywords

Navigation