Skip to main content
Log in

Proteome analysis of Apis mellifera royal jelly

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript


Royal jelly plays a pivotal role in the development of honey bee larvae. However, while various health promoting properties of royal jelly have been reported, most of the active substances within royal jelly that lead to these properties are still unknown. Since up to 50% (dry mass) of royal jelly is protein, royal jelly proteome analysis is a promising starting point for attempts to identify the proteins that provide health-promoting effects. However, the comprehensive analysis of royal jelly proteins is hampered by the enormous abundance of some proteins in the major royal jelly protein family, which constitutes 80–90% of the royal jelly proteome. The high heterogeneity of these proteins is an additional challenge for proteomic analysis, since it necessitates the use of analytical techniques that provide high resolution and a wide dynamic range. The application of individual methods such as 2D-PAGE or multidimensional chromatography can only yield certain subpopulations of a proteome due to the specific bias of each method. We applied different methods for the prefractionation and separation of royal jelly proteins in order to circumvent the shortcomings of the individual techniques and achieve a high coverage of the royal jelly proteome. In this way, we were able to identify 20 different proteins in total, as well as to show a very high degree of cleavage of different proteins of the major royal jelly protein family. Furthermore, we investigated the protein phosphorylation of royal jelly proteins, and identified and located two phosphorylation sites within venom protein 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



multidimensional liquid chromatography


morpholino-propanesulfonic acid


major royal jelly protein


molecular weight


  1. Williams DL (2000) Vet J 160:61–73

    Article  CAS  Google Scholar 

  2. Kucharski R, Maleszka R (2002) Genome Biol 3:RESEARCH0007.1–7.9

  3. Moritz RF, Lattorff HM, Neumann P, Kraus FB, Radloff SE, Hepburn HR (2005) Naturwissenschaften 92:488–491

    Article  CAS  Google Scholar 

  4. Santos KS, dos Santos LD, Mendes MA, de Souza BM, Malaspina O, Palma MS (2005) Insect Biochem Mol Biol 35:85–91

    Article  CAS  Google Scholar 

  5. Scarselli R, Donadio E, Giuffrida MG, Fortunato D, Conti A, Balestreri E, Felicioli R, Pinzauti M, Sabatini AG, Felicioli A (2005) Proteomics 5:769–776

    Article  CAS  Google Scholar 

  6. Schmitzova J, Klaudiny J, Albert S, Schroder W, Schreckengost W, Hanes J, Judova J, Simuth J (1998) Cell Mol Life Sci 54:1020–1030

    Article  CAS  Google Scholar 

  7. Miyata T (2007) J Pharmacol Sci 103:127–131

    Article  CAS  Google Scholar 

  8. Kobayashi N, Unten S, Kakuta H, Komatsu N, Fujimaki M, Satoh K, Aratsu C, Nakashima H, Kikuchi H, Ochiai K, Sakagami H (2001) In Vivo 15:17–23

    CAS  Google Scholar 

  9. Ghosh S, Playford RJ (2003) Clin Sci (Lond) 104:547–556

    Article  Google Scholar 

  10. Stocker A, Schramel P, Kettrup A, Bengsch E (2005) J Trace Elem Med Biol 19:183–189

    Article  CAS  Google Scholar 

  11. Nagai T, Inoue R, Suzuki N, Nagashima T (2006) J Med Food 9:363–367

    Article  CAS  Google Scholar 

  12. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) J Biol Chem 265:11333–11337

    CAS  Google Scholar 

  13. Colhoun EH, Smith MV (1960) Nature 188:854–855

    Article  CAS  Google Scholar 

  14. Tamura T, Fujii A, Kuboyama N (1987) Nippon Yakurigaku Zasshi 89:73–80

    CAS  Google Scholar 

  15. Dixit PK, Patel NG (1964) Nature 202:189–190

    Article  CAS  Google Scholar 

  16. Nagai T, Inoue R (2004) Food Chem 84:181–186

    Article  CAS  Google Scholar 

  17. Okamoto I, Taniguchi Y, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M (2003) Life Sci 73:2029–2045

    Article  CAS  Google Scholar 

  18. Kimura M, Kimura Y, Tsumura K, Okihara K, Sugimoto H, Yamada H, Yonekura M (2003) Biosci Biotechnol Biochem 67:2055–2058

    Article  CAS  Google Scholar 

  19. Tomoda G, Matsuyama J, Matsuka M (1977) J Apic Res 16:125–130

    CAS  Google Scholar 

  20. Sano O, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M (2004) J Agric Food Chem 52:15–20

    Article  CAS  Google Scholar 

  21. Albertova V, Su S, Brockmann A, Gadau J, Albert S (2005) J Agric Food Chem 53:8075–8081

    Article  CAS  Google Scholar 

  22. Albert S, Klaudiny J, Simuth J (1999) Insect Biochem Mol Biol 29:427–434

    Article  CAS  Google Scholar 

  23. Albert S, Bhattacharya D, Klaudiny J, Schmitzova J, Simuth J (1999) J Mol Evol 49:290–297

    Article  CAS  Google Scholar 

  24. Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Electrophoresis 11:101–117

    Article  CAS  Google Scholar 

  25. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  26. Blum H, Beier H, Gross HJ (1987) Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  27. Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, Meyer HE (2000) Electrophoresis 21:2721–2728

    Article  CAS  Google Scholar 

  28. Wagner Y, Sickmann A, Meyer HE, Daum G (2003) J Am Soc Mass Spectrom 14:1003–1011

    Article  CAS  Google Scholar 

  29. Grosse-Coosmann F, Boehm AM, Sickmann A (2005) BMC Bioinformatics 6:290

    Article  CAS  Google Scholar 

  30. Sickmann A, Mreyen M, Meyer HE (2002) IUBMB Life 54:51–57

    Article  CAS  Google Scholar 

  31. Reinders J, Sickmann A (2005) Proteomics 5(16):4052–4061

    Google Scholar 

  32. Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J, Jacobs FJ (2005) Biochim Biophys Acta 1752:1–5

    CAS  Google Scholar 

  33. Bilikova K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Simuth J (2002) FEBS Lett 528:125–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joerg Reinders.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönleben, S., Sickmann, A., Mueller, M.J. et al. Proteome analysis of Apis mellifera royal jelly. Anal Bioanal Chem 389, 1087–1093 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: