Cellular microarrays for use with capillary-driven microfluidics

Abstract

We present a method for the facile arraying of cells on microstructured substrates which should be suitable for cellular assays in autonomous microfluidic capillary systems (CSs). The CSs, which were designed and microfabricated in Si, have various microfluidic functional elements including reaction chambers wherein cellular arrays are located. Two methods for arraying the cells were explored. In the first method, a hydrophobic alkanethiol was microcontact-printed on the bottom surface of a microfluidic reaction chamber. The subsequent adsorption of protein-repellent alkanethiols around the printed areas and the deposition from solution of fibronectin (FN) on the hydrophobic areas resulted in an adhesive pattern for the attachment of living human breast cancer cells. This method was limited by the formation of cellular clusters, which proved difficult to remove selectively. The second method employed a poly(dimethylsiloxane) elastomer having oval recessed microstructures. The selective coating of the inner walls of the ovals with FN and the blocking of the mesas around the ovals with bovine serum albumin (BSA) permitted single or multiple cells to be arrayed depending on the size of the ovals. The possibility of sealing CSs with cells arrayed on poly(dimethylsiloxane) may provide a versatile platform for high-throughput experimentation down to the single-cell level.

The deposition of one or a few living cells in fibronectin-coated poly(dimethylsiloxane) microstructures results in cellular arrays, which can be interfaced with capillary-driven microfluidics

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Sundberg SA (2000) Curr Opin Biotechnology 11:47–53

    Article  CAS  Google Scholar 

  2. 2.

    Prokop A, Prokop Z, Schaffer D, Kozlov E, Wikswo J, Cliffel D, Baudenbacher F (2004) Biomed Microdev 6:325–339

    Article  CAS  Google Scholar 

  3. 3.

    Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Exp Cell Res 235:305–313

    Article  CAS  Google Scholar 

  4. 4.

    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20:2363–2376

    Article  CAS  Google Scholar 

  5. 5.

    Kim H, Doh J, Irvine DJ, Cohen RE, Hammond PT (2004) Biomacromolecules 5:822–827

    Article  CAS  Google Scholar 

  6. 6.

    Branch DW, Corey JM, Weyhenmeyer JA, Brewer GJ, Wheeler BC (1998) Med Biol Eng Comput 36:135–141

    Article  CAS  Google Scholar 

  7. 7.

    Scholl M, Sprössler C, Denyer M, Krause M, Nakajima K, Maelicke A, Knoll W, Offenhäusser A (2000) J Neurosci Methods 104:65–75

    Article  CAS  Google Scholar 

  8. 8.

    Bernard A, Fitzli D, Sonderegger P, Delamarche E, Michel B, Bosshard HR, Biebuyck HA (2001) Nat Biotechnol 19:866–869

    Article  CAS  Google Scholar 

  9. 9.

    Rettig JR, Folch A (2005) Anal Chem 77:5628–5634

    Article  CAS  Google Scholar 

  10. 10.

    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) Nat Biotechnol 24:703–707

    Article  CAS  Google Scholar 

  11. 11.

    Ostuni Ostuni E, Chen CS, Ingber DE, Whitesides GM (2001) Langmuir 17:2828–2834

    Article  CAS  Google Scholar 

  12. 12.

    Dusseiller MR, Schlaepfer D, Koch M, Kroschewski R, Textor M (2005) Biomaterials 26:5917–5925

    Article  CAS  Google Scholar 

  13. 13.

    Park MC, Hur JY, Kwon KW, Park SH, Suh KY (2006) Lab Chip 6:988–994

    Article  CAS  Google Scholar 

  14. 14.

    Deutsch A, Zurgil N, Hurevich I, Shafran Y, Afrimzon E, Lebovich P, Deutsch M (2006) Biomed Microdevices 8:361–374

    Article  Google Scholar 

  15. 15.

    Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Lab Chip 5:30–37

    Article  CAS  Google Scholar 

  16. 16.

    Di Carlo D, Wu LY, Lee LP (2006) Lab Chip 6:1445–1449

    Article  CAS  Google Scholar 

  17. 17.

    Yang M, Li CW, Yang J (2002) Anal Chem 74:3991–4001

    Article  CAS  Google Scholar 

  18. 18.

    Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM (1999) Proc Natl Acad Sci USA 96:5545–5548

    Article  CAS  Google Scholar 

  19. 19.

    Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A (2005) Nat Methods 2:685–689

    Article  CAS  Google Scholar 

  20. 20.

    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Nature 434:1134–1138

    Article  CAS  Google Scholar 

  21. 21.

    Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Anal Chem 74:6139–6144

    Article  CAS  Google Scholar 

  22. 22.

    Bernard A, Michel B, Delamarche E (2001) Anal Chem 73:8–12

    Article  CAS  Google Scholar 

  23. 23.

    Delamarche E, Juncker D, Schmid H (2005) Adv Mater 17:2911–2933

    Article  CAS  Google Scholar 

  24. 24.

    Coyer SR, Garcia AJ, Delamarche E (2007) Angew Chem Int Ed Engl (in press)

  25. 25.

    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Science 294:1708–1712

    Article  CAS  Google Scholar 

  26. 26.

    Folch A, Ayon A, Hurtado O, Schmidt MA, Toner M (1999) Trans ASME 121:28–34

    CAS  Article  Google Scholar 

  27. 27.

    Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM (2000) Proc Natl Acad Sci USA 97:2408–2413

    Article  CAS  Google Scholar 

  28. 28.

    Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R (2005) Lab Chip 5:1380–1386

    Article  CAS  Google Scholar 

  29. 29.

    Bhatia SN, Balis UJ, Yarmush ML, Toner M (1998) Biotechnol Prog 14:378–387

    Article  CAS  Google Scholar 

  30. 30.

    Wolf M, Zimmermann M, Delamarche E, Hunziker P (2007) Biomed Microdevices 9:135–141

    Article  CAS  Google Scholar 

  31. 31.

    Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) Lab Chip 4:563–569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Zimmermann for useful discussions, and U. Drechsler, D. Caimi, and R. Stutz for their support with the preparation of microfluidic chips and molds. We also thank Walter Riess and Paul Seidler for their continuous support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Delamarche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovchik, R., von Arx, C., Viviani, A. et al. Cellular microarrays for use with capillary-driven microfluidics. Anal Bioanal Chem 390, 801–808 (2008). https://doi.org/10.1007/s00216-007-1436-3

Download citation

Keywords

  • Microfluidics
  • Cellular arrays
  • Microcontact printing
  • Poly(dimethylsiloxane)