Skip to main content
Log in

Determination of cadmium in grains by isotope dilution ICP–MS and coprecipitation using sample constituents as carrier precipitants

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS.

Overview of a coprecipitation method using sample constituents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nordberg GF (2004) BioMetals 17:485–489

    Article  CAS  Google Scholar 

  2. CODEX Alimentarius Commission (2006) CODEX Alimentarius website. http://www.codexalimentarius.net/web/index_en.jsp. Cited 5th June 2007

  3. Okamoto K (1991) Sci Total Environ 107:29–44

    Article  CAS  Google Scholar 

  4. Cubadda F (2004) J AOAC Int 87:173–204

    Google Scholar 

  5. Vassileva E, Quetel CR (2004) Anal Chim Acta 519:79–86

    Article  CAS  Google Scholar 

  6. Vassileva E, Quetel CR, Petrov I (2003) Spectrochim Acta B 58:1553–1565

    Article  Google Scholar 

  7. Park CJ, Suh JK (1997) J Anal Atom Spectrom 12:573–577

    Google Scholar 

  8. Klingbeil P, Vogl J, Pritzkow W, Riebe G, Müller J (2001) Anal Chem 73:1881–1888

    Article  CAS  Google Scholar 

  9. Fortunato G, Wunderli S (2003) Anal Bioanal Chem 377:111–116

    Google Scholar 

  10. Vogl J (2007) J Anal Atom Spectrom 22:475–492

    Google Scholar 

  11. Inagaki K, Takatsu A, Uchiumi A, Nakama A, Okamoto K (2001) J Anal Atom Spectrom 16:1370–1374

    Google Scholar 

  12. Rodushkin I (1998) Fresenius J Anal Chem 362:541–546

    Article  CAS  Google Scholar 

  13. Karunasagar D, Arunachalam J (2001) Anal Chim Acta 441:291–296

    Article  CAS  Google Scholar 

  14. Li PC, Jiang SJ (2003) Anal Chim Acta 495:143–150

    Article  CAS  Google Scholar 

  15. Jiang SJ, Palmieri MD, Frits JS, Houk RS (1987) Anal Chim Acta 200:559–571

    Article  CAS  Google Scholar 

  16. Hwang TJ, Jiang SJ (1997) J Anal Atom Spectrom 12:579–584

    Google Scholar 

  17. Chang CC, Liu HT, Jiang SJ (2003) Anal Chim Acta 493:213–218

    Article  CAS  Google Scholar 

  18. Yip YC, Chu HS, Chan KC, Chan KK, Cheung PY, Sham WC (2007) Anal Bioanal Chem 386:1475–1487

    Article  Google Scholar 

  19. Phuong TD, Chuong PV, Khiem DT, Kokot S (1995) Analyst 124:553–560

    Article  Google Scholar 

  20. Wolnik KA, Fricke FL, Capar SG, Baude GL, Meyer MW, Satzger RD, Kuennen RW (1983) J Agric Food Chem 31:1244–1249

    Article  CAS  Google Scholar 

  21. Wolnik KA, Fricke FL, Capar SG, Meyer R, Satzger MW, Bonnin D, Gaston E CM (1985) J Agric Food Chem 33:807–811

    Article  CAS  Google Scholar 

  22. Isoyama H, Uchida T, Oguchi K, Iida C, Nakagawa G (1990) Anal Sci 6:385–388

    CAS  Google Scholar 

  23. Henrion A (1994) Fresenius J Anal Chem 350:657–658

    Article  CAS  Google Scholar 

  24. Ellison SLR, Rosslein M, Williams A (2000) EURACHEM/CITAC guide: quantifying uncertainty in analytical measurement, 2nd edn. CITAC Secretariat, Teddington, UK, pp 89–96

  25. Pella PA, Kingston HM, Sleber JR, Feng LY (1983) Anal Chem 55:1193–1194

    Article  CAS  Google Scholar 

  26. Yang JY, Yang MH, Lin SM (1985) Anal Chem 57:472–474

    Article  CAS  Google Scholar 

  27. Yang JY, Yang MH, Lin SM (1990) Anal Chem 62:146–150

    Article  CAS  Google Scholar 

  28. Inagaki K, Haraguchi H (2000) Analyst 125:191–196

    Article  CAS  Google Scholar 

  29. Yang XJ, Pin C (2002) Anal Chim Acta 458:375–386

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the SME Intellectual Foundation Construction Project of the Japanese Ministry of Economy, Trade and Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Inagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, K., Narukawa, T., Yarita, T. et al. Determination of cadmium in grains by isotope dilution ICP–MS and coprecipitation using sample constituents as carrier precipitants. Anal Bioanal Chem 389, 691–696 (2007). https://doi.org/10.1007/s00216-007-1396-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1396-7

Keywords

Navigation