Skip to main content
Log in

Factorial-design optimization of gas chromatographic analysis of tetrabrominated to decabrominated diphenyl ethers. Application to domestic dust

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gas chromatographic analysis of polybrominated diphenyl ethers (PBDEs) has been evaluated in an attempt to achieve better control of the separation process, especially for highly substituted congeners. Use of a narrow-bore capillary column enabled adequate determination of tetra, penta, hexa, hepta, octa, nona and decaBDE congeners in only one chromatographic run while maintaining resolution power similar to that of conventional columns. A micro electron-capture detector (GC–μECD) was used. Chromatographic conditions were optimized by multifactorial experimental design, with the objective of obtaining not only high sensitivity but also good precision. In this way two different approaches to maximizing response and minimizing variability were tested, and are fully discussed. These optimum chromatographic conditions were then used to determine PBDEs extracted from domestic dust samples by microwave-assisted solvent extraction (MASE). Quantitative recovery (90–108%) was achieved for all the PBDEs and method precision (RSD < 13%) was satisfactory. Accuracy was tested by use of the standard reference material SRM 2585, and sub-ng g−1 limits of detection were obtained for all compounds except BDE-209 (1.44 ng g−1). Finally, several samples of house dust were analysed by use of the proposed method and all the target PBDEs were detected in all the samples. BDE-209 was the predominant congener. Amounts varied from 58 to 1615 ng g−1 and the average contribution to the total PBDE burden of 52%. The main congeners of the octaBDE mixture (BDE-183, BDE-197, BDE-207 and BDE-196) also made an important contribution (29%) to the total. These are the first data about the presence of these compounds in European house-dust samples. Finally, the sum of the main congeners in the pentaBDE commercial mixture (BDE-47, BDE-99, and BDE-100) contributed 14% to the total.

Polybrominated diphenyl ethers in House Dust

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization-International Programme on Chemical Safety (1994) Environmental health criteria 162: brominated diphenyl ethers. Geneva, Switzerland (see http://www.inchem.org/documents/ehc/ehc/ehc162.htm)

  2. Bromine Science and Environmental Forum (2003) Major brominated flame retardants volume estimates (see http://www.bsefsite.com/docs/bfr_vols_2001.doc)

  3. Agency for Toxic Substances and Disease Registry (2004) Toxicological profile for polybrominated biphenyls and polybrominated diphenylethers. U.S. Department of Health and Human Services (see http://www.atsdr.cdc.gov/toxprofiles/tp68.pdf)

  4. Sjödin A, Päpke O, McGahee E, Jones R, Focant JF, Pless-Mulloli T, Toms LM, Wang R, Zhang Y, Needham L, Herrmann T, Patterson D (2004) Organohal Compd 66:3817–3822

    Google Scholar 

  5. Environ International Corporation (2003) Tier 1 Assessment of the potential health risks to children associated with exposure to the commercial pentabromodiphenyl ether product. Voluntary Children’s Environmental Exposure Program Pilot (VCEEPP). Prepared by ENVIRON International Corporation for Great Lakes Chemical Corporation

  6. Elliott JE, Wilson LK, Wakeford B (2005) Environ Sci Technol 39:5584–5591

    Article  CAS  Google Scholar 

  7. Faengstroem B, Hovander L, Bignert A, Athanassiadis I, Linderholm L, Grandjean P, Weihe P, Bergman A (2005) Environ Sci Technol 39:9457–9463

    Article  CAS  Google Scholar 

  8. Watanabe I, Tatsukawa R (1987) Bull Environ Contam Toxicol 39:953–959

    Article  CAS  Google Scholar 

  9. Sellström U, Söderström G, de Wit C, Tysklind M (1998) Organohal Compd 35:447–450

    Google Scholar 

  10. Peterman PH, Orazio CE, Feltz KP (2003) Organohal Compd 63:357–360

    CAS  Google Scholar 

  11. Tysklind M, Sellström U, Söderström G, de Wit C (2001) Abiotic transformation of polybrominated diphenylethers (PBDEs): Photolytic debromination of decabromo diphenyl ether. Brominated Flame Retardants Conference, Ontario, Canada, pp, 42–45

  12. de Boer J, Cofino WP (2002) Chemosphere 46:625–633

    Article  Google Scholar 

  13. de Boer J (2004) Environ Chem 1:81–85

    Article  Google Scholar 

  14. Korytár P, Covaci A, de Boer J, Gelbin A (2005) J Chromatogr A 1065:239–249

    Article  Google Scholar 

  15. Björklund J (2003) Gas chromatography and mass spectrometry of polybrominated diphenyl ethers. Ph. D. Thesis, Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden

  16. Covaci A, de Boer J, Ryan JJ, Voorspoels S, Schepens P (2002) Anal Chem 74:790–798

    Article  CAS  Google Scholar 

  17. Alaee M, Sergeant DB, Ikonomou MG, Luross JM (2001) Chemosphere 44:1489–1495

    Article  CAS  Google Scholar 

  18. de Boer J, Allchin C, Law R, Zegers B, Boon JP (2001) Trends Anal Chem 20:591–599

    Article  Google Scholar 

  19. Björklund J, Tollbäck P, Hiärne C, Dyremark E, Östman C (2004) J Chromatogr A 1041:201–210

    Article  Google Scholar 

  20. Sjödin A, Carlsson H, Thuresson K, Sjölin S, Bergman Å, Östman C (2001) Environ Sci Technol 35:448–454

    Article  Google Scholar 

  21. Vetter W (2001) Anal Chem 73:4951–4957

    Article  CAS  Google Scholar 

  22. Polo M, Gómez-Noya G, Quintana JB, Llompart M, García-Jares C, Cela R (2004) Anal Chem 76:1054–1062

    Article  CAS  Google Scholar 

  23. Pirard C, de Pauw E, Focant JF (2003) J Chromatogr A 998:169–181

    Article  CAS  Google Scholar 

  24. de Boer J, Allchin CR (2001) Organohal Compd 52:13–17

    Google Scholar 

  25. Allchin CR, Law RJ, Morris S (1999) Environ Poll 105:197–207

    Article  CAS  Google Scholar 

  26. Hanari N, Okazawa T, Guruge K, Falandysz J, Yamashita N (2004) Organohal Compd 66:205–210

    CAS  Google Scholar 

  27. Martínez A, Ramil M, Montes R, Hernanz D, Rubí E, Rodríguez I, Cela R (2005) J Chromatogr A 1072:83–91

    Article  Google Scholar 

  28. Jones-Otazo HA, Clarke JP, Diamond ML, Archbold JA, Ferguson G, Harner T, Richardson GM, Ryan JJ, Wilford B (2005) Environ Sci Technol 39:5121–5130

    Article  CAS  Google Scholar 

  29. Wilford BH, Shoeib M, Harner T, Zhu J, Jones AK (2005) Environ Sci Technol 39:7027–7035

    Article  CAS  Google Scholar 

  30. Santillo D, Johnston P, Brigden K (2001) The presence of brominated flame retardants and organotin compounds in dusts collected from Parliament buildings from eight countries. Greenpeace Research Laboratories, Exeter University, UK (see http://www.greenpeace.to/publications_pdf/dust%2003_2001.pdf)

  31. Knoth W, Mann W, Meyer R, Nebhuth J (2002) Organohal Compd 58:213–216

    CAS  Google Scholar 

  32. Julander A, Westberg H, Engwalla M, van Bavel B (2005) Sci Total Environ 350:151–160

    Article  CAS  Google Scholar 

  33. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Environ Sci Technol 37:4543–4553

    Article  CAS  Google Scholar 

  34. Stapleton HM, Dodder NG, Offenberg JH, Schantz MM, Wise S (2005) Environ Sci Technol 39:925–931

    Article  CAS  Google Scholar 

  35. Regueiro J, Llompart M, García-Jares C, Cela R (2006) J Chromatogr A 1137:1–7

    Article  CAS  Google Scholar 

  36. Tan J, Cheng SM, Loganath A, Chong YS, Obbard JP (2007) Chemosphere 66:985–992

    Article  CAS  Google Scholar 

  37. Saito K, Sjödin A, Sandau CD, Davis MD, Nakazawa H, Matsuki Y, Patterson DG Jr (2004) Chemosphere 57:373–381

    Article  CAS  Google Scholar 

  38. KemmLein S, Bergmann M, Jann O, Wurbs J, Eggers HH (eds) (2005) Standard measurement method for the determination of polybrominated flame retardants (pentabromo diphenylether, octabromo diphenylether) in products. Federal Environmental Agency (Umweltbundesamt), Berlin, Germany

  39. Stapleton HM, Harner T, Shoeib M, Keller JM, Schantz MM, Leigh SD, Wise SA (2006) Anal Bioanal Chem 384:791–800

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was financed by FEDER funds and by projects CTQ2006-03334 from the CICYT (Ministerio de Ciencia y Tecnología, Spain) and PGIDIT04PXIC23701PN from Xunta de Galicia. J.R. acknowledges receipt of a doctoral grant from the CICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Garcia-Jares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regueiro, J., Llompart, M., Garcia-Jares, C. et al. Factorial-design optimization of gas chromatographic analysis of tetrabrominated to decabrominated diphenyl ethers. Application to domestic dust. Anal Bioanal Chem 388, 1095–1107 (2007). https://doi.org/10.1007/s00216-007-1350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1350-8

Keywords

Navigation