Skip to main content

Advertisement

Log in

Aptamers: molecular tools for analytical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are artificial nucleic acid ligands, specifically generated against certain targets, such as amino acids, drugs, proteins or other molecules. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). Thanks to their unique characteristics and chemical structure, aptamers offer themselves as ideal candidates for use in analytical devices and techniques. Recent progress in the aptamer selection and incorporation of aptamers into molecular beacon structures will ensure the application of aptamers for functional and quantitative proteomics and high-throughput screening for drug discovery, as well as in various analytical applications. The properties of aptamers as well as recent developments in improved, time-efficient methods for their selection and stabilization are outlined. The use of these powerful molecular tools for analysis and the advantages they offer over existing affinity biocomponents are discussed. Finally the evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robertson DL, Joyce GF (1990) Nature 344(6265):467–468

    CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Science 249(4968):505–510

    CAS  Google Scholar 

  3. Ellington AD, Szostak JW (1990) Nature 346(6287):818–822

    CAS  Google Scholar 

  4. Famulok M (1994) J Am Chem Soc 116(5):1698–1706

    CAS  Google Scholar 

  5. Burke JM, Berzal-Herranz A (1993) FASEB J 7(1):106–112

    CAS  Google Scholar 

  6. Conrad RC, Baskerville S, Ellington AD (1995) Mol Divers 1(1):69–78

    CAS  Google Scholar 

  7. Uphoff KW, Bell SD, Ellington AD (1996) Curr Opin Struc Biol 6(3):281–288

    CAS  Google Scholar 

  8. Wilson DS, Szostak JW (1999) Annu Rev Biochem 68:611–647

    CAS  Google Scholar 

  9. Nieuwlandt D (2000) Curr Issues Mol Biol 2(1):9–16

    CAS  Google Scholar 

  10. Jayasena SD (1999) Clin Chem 45(9):1628–1650

    CAS  Google Scholar 

  11. Patel DJ, Suri AK, Jiang F, Jiang L, Fan P, Kumar RA, Nonin S (1997) J Mol Biol 272(5):645–664

    CAS  Google Scholar 

  12. Clark SL, Remcho VT (2002) Electrophoresis 23(9):1335–1340

    CAS  Google Scholar 

  13. Luzi E, Minunni M, Tombelli S, Mascini M (2003) Trends Anal Chem 22(11):810–818

    CAS  Google Scholar 

  14. You KM, Lee SH, Im A, Lee SB (2003) Biotechnol Bioprocess Eng 8:64–75

    Article  CAS  Google Scholar 

  15. Jenison RD, Gill SC, Pardi A, Polisky B (1994) Science 263(5152):1425–1429

    CAS  Google Scholar 

  16. Win MN, Klein JS, Smolke CD (2006) Nucleic Acids Res 34(19):5670–5682

    CAS  Google Scholar 

  17. Geiger A, Burgstaller P, Von der Eltz H, Roeder A, Famulok M (1996) Nucleic Acids Res 24(6):1029–1036

    CAS  Google Scholar 

  18. O’Sullivan CK, Baldrich E, Campas M (2006) In: Rapley R, Harbron S (eds) Molecular analysis and genome discovery. Wiley-VCH, Weinheim

    Google Scholar 

  19. Deisingh AK (2006) Handb Exp Pharmacol 173:341–357

    Article  CAS  Google Scholar 

  20. Zhan LS, Shao NS, Peng JC, Sun HY, Wang QL (2003) Prog Biochem Biophys 30(1):151–155

    CAS  Google Scholar 

  21. Drolet DW, Jenison RD, Smith DE, Pratt D, Hicke BJ (1999) Comb Chem High Throughput Screen 2(5):271–278

    CAS  Google Scholar 

  22. Holeman LA, Robinson SL, Szostak JW, Wilson C (1998) Fold Des 3(6):423–431

    CAS  Google Scholar 

  23. Burke DH, Gold L (1997) Nucleic Acids Res 25(10):2020–2024

    CAS  Google Scholar 

  24. Stoltenburg R, Reinemann C, Strehlitz B (2005) Anal Bioanal Chem 383(1):83–91

    CAS  Google Scholar 

  25. Mendonsa SD, Bowser MT (2004) J Am Chem Soc 126(1):20–21

    CAS  Google Scholar 

  26. Jeong S, Eom TY, Kim SJ, Lee SW, Yu J (2001) Biochem Biophys Res Commun 281(1):237–243

    CAS  Google Scholar 

  27. Sayer N, Ibrahim J, Turner K, Tahiri-Alaoui A, James W (2002) Biochem Biophys Res Commun 293(3):924–931

    CAS  Google Scholar 

  28. Schürer H, Buchynskyy A, Korn K, Famulok M, Welzel P, Hahn U (2001) Biol Chem 382(3):479–481

    Google Scholar 

  29. Meisenheimer KM, Koch TH (1997) Crit Rev Biochem Mol 32(2):101–140

    CAS  Google Scholar 

  30. Koch TH, Smith D, Tabacman E, Zichi DA (2004) J Mol Biol 5:1159–1173

    Google Scholar 

  31. Jensen KB, Atkinson BL, Willis MC, Koch TH, Gold L (1995) Proc Natl Acad Sci USA 92(26):12220–12224

    CAS  Google Scholar 

  32. Krylov SN, Berezovski M (2003) Analyst 128(6):571–575

    CAS  Google Scholar 

  33. Tang JJ, Xie JW, Shao NS, Yan Y (2006) Electrophoresis 27(7):1303–1311

    CAS  Google Scholar 

  34. Mendonsa SD, Bowser MT (2005) J Am Chem Soc 127(26):9382–9383

    CAS  Google Scholar 

  35. Krylov SN (2006) J Biomol Screen 11(2):115–122

    CAS  Google Scholar 

  36. Cox JC, Rudolph P, Ellington AD (1998) Biotechnol Progr 14(6):845–850

    CAS  Google Scholar 

  37. Cox JC, Ellington AD (2001) Bioorg Med Chem 9(10):2525–2531

    CAS  Google Scholar 

  38. Cox JC, Rajendran M, Riedell T, Davidson EA, Sooter LJ, Bayer TS, Schmitz-Brown M, Ellington AD (2002) Comb Chem High Throughput Screen 5(4):289–299

    CAS  Google Scholar 

  39. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Nucleic Acids Res 30(20):e108

    Google Scholar 

  40. Ellington A, Cox JC, Sooter LJ, Bayer T, Motz G, Hood A, Garcia C, Hesselberth J, Hall B, Levy M, Rajendran M, Kirby R, Gehrke B, Collet TA, Knudsen SM, Cockrum S (2004) Oral presentation at the 24th Army Science Conference, Orlando, FL

  41. Chambers JP, Valdes JJ (2002) Poster presented at the 23rd Army Science Conference, FL, USA

  42. Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP (2006) Anal Bioanal Chem 384(1):191–198

    CAS  Google Scholar 

  43. Kusser W (2000) J Biotechnol 74(1):27–38

    CAS  Google Scholar 

  44. James W (2001) Curr Opin Pharmacol 1(5):540–546

    CAS  Google Scholar 

  45. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N (1998) J Biol Chem 273(32):20556–20567

    CAS  Google Scholar 

  46. Jhaveri S, Olwin B, Ellington AD (1998) Bioorg Med Chem Lett 8(17):2285–2290

    CAS  Google Scholar 

  47. King DJ, Ventura DA, Brasier AR, Gorenstein DG (1998) Biochemistry 37(47):16489–16493

    CAS  Google Scholar 

  48. Padilla R, Sousa R (1999) Nucleic Acids Res 27(6):1561–1563

    CAS  Google Scholar 

  49. Kujau MJ, Wolfl S (1998) Nucleic Acids Res 26(7):1851–1853

    CAS  Google Scholar 

  50. Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM (1997) J Immunol 159(1):259–267

    CAS  Google Scholar 

  51. Yan X, Gao X, Zhang Z (2004) Genomics Proteomics Bioinformatics 2(1):32–42

    CAS  Google Scholar 

  52. Bugaut A, Toulme JJ, Rayner B (2006) Org Biomol Chem 4(22):4082–4088

    CAS  Google Scholar 

  53. Klußmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Nat Biotechnol 14(9):1112–1115

    Google Scholar 

  54. Nolte A, Klußmann S, Bald R, Erdmann VA, Furste JP (1996) Nat Biotechnol 14(9):1116–1119

    CAS  Google Scholar 

  55. Leva S, Lichte A, Burmeister J, Muhn P, Jahnke B, Fesser D, Erfurth J, Burgstaller P, Klussmann S (2002) Chem Biol 9(3):351–359

    CAS  Google Scholar 

  56. Williams KP, Liu XH, Schumacher TNM, Lin HY, Ausiello DA, Kim PS, Bartel DP (1997) Proc Natl Acad Sci USA 94(21):11285–11290

    CAS  Google Scholar 

  57. Helmling S, Maasch C, Eulberg D, Buchner K, Schroder W, Lange C, Vonhoff S, Wlotzka B, Tschop MH, Rosewicz S, Klussmann S (2004) Proc Natl Acad Sci USA 101(36):13174–13179

    CAS  Google Scholar 

  58. Vater A, Jarosch F, Buchner K, Klussmann S (2003) Nucleic Acids Res 31(21):e130

    Google Scholar 

  59. Purschke WG, Radtke F, Kleinjung F, Klussmann S (2003) Nucleic Acids Res 31(12):3027–3032

    CAS  Google Scholar 

  60. Faulhammer D, Eschgfaller B, Stark S, Burgstaller P, Englberger W, Erfurth J, Kleinjung F, Rupp J, Vulcu SD, Schroder W, Vonhoff S, Nawrath H, Gillen C, Klussmann S (2004) RNA 10(3):516–527

    CAS  Google Scholar 

  61. Sooter LJ, Ellington AD (2002) Chem Biol 9(8):857–858

    CAS  Google Scholar 

  62. Boisgard R, Kuhnast B, Vonhoff S, Younes C, Hinnen F, Verbavatz JM, Rousseau B, Furste JP, Wlotzka B, Dolle F, Klussmann S, Tavitian B (2005) Eur J Nucl Med Mol I 32(4):470–477

    CAS  Google Scholar 

  63. Drolet DW, Moon-McDermott L, Romig TS (1996) Nat Biotechnol 14(8):1021–1027

    CAS  Google Scholar 

  64. Vivekananda J, Kiel JL (2006) Lab Invest 86(6):610–618

    CAS  Google Scholar 

  65. Kawazoe N, Ito Y, Imanishi Y (1997) Biotechnol Progr 13(6):873–874

    CAS  Google Scholar 

  66. Baldrich E, Restrepo A, O’Sullivan CK (2005) Anal Chem 76(23):7053–7063

    Google Scholar 

  67. Barry R, Soloviev M (2004) Proteomics 4(12):3717–3726

    CAS  Google Scholar 

  68. Sujatha N, Suryakala S, Rao BS (2001) J AOAC Int 84(5):1465–1474

    CAS  Google Scholar 

  69. Jana CK, Ali E (1999) J Immunol Methods 225(1–2):95–103

    CAS  Google Scholar 

  70. Gerdes M, Meusel M, Spener F (1999) J Immunol Methods 223(2):217–226

    CAS  Google Scholar 

  71. Gerdes M, Meusel M, Spencer F (1997) Anal Biochem 252(1):198–204

    CAS  Google Scholar 

  72. Rye PD, Nustad K (2001) BioTechniques 30(2):290–295

    CAS  Google Scholar 

  73. Yang X, Li X, Prow TW, Reece LM, Bassett SE, Luxon BA, Herzog NK, Aronson J, Shope RE, Leary JF, Gorenstein DG (2003) Nucleic Acids Res 31(10):e54

    Google Scholar 

  74. Bruno JG, Kiel JL (2002) BioTechniques 32(1):178–183

    CAS  Google Scholar 

  75. Ravelet C, Grosset C, Peyrin E (2006) J Chromatogr A 1117(1):1–10

    CAS  Google Scholar 

  76. Romig TS, Bell C, Drolet DW (1999) J Chromatogr B 731(2):275–284

    CAS  Google Scholar 

  77. Deng Q, German I, Buchanan D, Kennedy RT (2001) Anal Chem 73(22):5415–5421

    CAS  Google Scholar 

  78. Huang C-C, Cao Z, Chang H-T, Tan W (2004) Anal Chem 76(23):6973–6981

    CAS  Google Scholar 

  79. Heegaard NHH (2003) Electrophoresis 24(22–23):3879–3891

    CAS  Google Scholar 

  80. Koutny LB, Schmalzing D, Taylor TA, Fuchs M (1996) Anal Chem 68(1):18–22

    CAS  Google Scholar 

  81. German I, Buchanan DD, Kennedy RT (1998) Anal Chem 70(21):4540–4545

    CAS  Google Scholar 

  82. Buchanan DD, Jameson EE, Perlette J, Malik A, Kennedy RT (2003) Electrophoresis 24(9):1375–1382

    CAS  Google Scholar 

  83. Pavski V, Le XC (2001) Anal Chem 73(24):6070–6076

    CAS  Google Scholar 

  84. Fu H, Guthrie JW, Le XC (2006) Electrophoresis 27(2):433–441

    CAS  Google Scholar 

  85. Haes AJ, Giordano BC, Collins GE (2006) Anal Chem 78(11):3758–3764

    CAS  Google Scholar 

  86. Rehder MA, McGown LB (2001) Electrophoresis 22(17):3759–3764

    CAS  Google Scholar 

  87. Fredriksson S, Gullberg M, Jarvius C, Olsson C, Pietras K, Gústafsdóttir S, Östman A, Landegren U (2002) Nat Biotechnol 20:473

    CAS  Google Scholar 

  88. Wang X, Li F, Su Y, Sun X, Li X, Schluesener H, Tang F, Xu S (2004) Anal Chem 76:5605

    CAS  Google Scholar 

  89. Di Giusto DA, Wlassoff WA, Gooding JJ, Messerle BA, King GC (2005) Nucleic Acids Res 33(6):e64

    Google Scholar 

  90. Zhang H, Wang Z, Li X, Le XC (2006) Angew Chem Int Ed Engl 45:1576

    CAS  Google Scholar 

  91. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Pure Apl Chem 71(12):2333–2348

    CAS  Google Scholar 

  92. O’Sullivan CK (2002) Anal Bioanal Chem 372(1):44–48

    CAS  Google Scholar 

  93. Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Furste JP, Bier FF (1998) Anal Chem 70(2):328–331

    CAS  Google Scholar 

  94. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM (1998) Anal Chem 70(16):3419–3425

    CAS  Google Scholar 

  95. Wilson DH, Groskopf W, Hsu S, Caplan D, Langner T, Baumann M, Demanno D, Williams G, Payette D, Dagel C, Lynch D, Manderino G (1998) Clin Chem 44(1):86–91

    CAS  Google Scholar 

  96. Lee M, Walt DR (2000) Anal Biochem 282(1):142–146

    CAS  Google Scholar 

  97. Hartmann R, Nørby PL, Martensen PM, Jørgensen P, James MC, Jacobsen C, Moestrup SK, Clemens MJ, Justesen J (1998) J Biol Chem 273(6):3236–3246

    CAS  Google Scholar 

  98. Kraus E, James W, Barclay AN (1998) J Immunol 160(11):5209–5212

    CAS  Google Scholar 

  99. Brody EN (1999) Mol Diagn Ther 4(4):381–388

    CAS  Google Scholar 

  100. McCauley TG, Hamaguchi N, Stanton M (2003) Anal Biochem 319(2):244–250

    CAS  Google Scholar 

  101. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Anal Chem 76(14):4066–4075

    CAS  Google Scholar 

  102. Tyagi S, Kramer FR (1996) Nat Biotechnol 14(3):303–308

    CAS  Google Scholar 

  103. Davis KA, Abrams B, Lin Y, Jayasena SD (1996) Nucleic Acids Res 24(4):702–706

    CAS  Google Scholar 

  104. Davis KA, Lin Y, Abrams B, Jayasena SD (1998) Nucleic Acids Res 26(17):3915–3924

    CAS  Google Scholar 

  105. Stojanovic MN, De Prada P, Landry DW (2001) ChemBioChem 2(6):411–415

    CAS  Google Scholar 

  106. Tan W, Wang K, Drake TJ (2004) Curr Opin Chem Biol 8(5):547–553

    CAS  Google Scholar 

  107. Yamamoto R, Kumar PKR (2000) Genes Cells 5(5):389–396

    CAS  Google Scholar 

  108. Fang X, Liu X, Schuster S, Tan W (1999) J Am Chem Soc 121(12):2921–2922

    CAS  Google Scholar 

  109. Liu X, Tan W (1999) Anal Chem 71(22):5054–5059

    CAS  Google Scholar 

  110. Fang X, Sen A, Vicens M, Tan W (2003) ChemBioChem 4(9):829–834

    CAS  Google Scholar 

  111. Henry MR, Wilkins Stevens P, Sun J, Kelso DM (1999) Anal Biochem 276(2):204–214

    CAS  Google Scholar 

  112. Nagatoishi S, Tanaka Y, Tsumoto K (2007) Biochem Biophys Res Commun 352(3):812–817

    CAS  Google Scholar 

  113. Dittmer WU, Reuter A, Simmel FA (2004) Angew Chem Int Ed Engl 43:3550–3553

    CAS  Google Scholar 

  114. Beissenhirtz MK, Willner I (2006) Org Biomol Chem 4:3392–3401

    CAS  Google Scholar 

  115. Vicens M, Sen A, Vanderlaan A, Drake TJ, Tan W (2005) ChemBioChem 6:900–907

    CAS  Google Scholar 

  116. Juskowiak B (2006) Anal Chim Acta 568(1–2):171–180

    CAS  Google Scholar 

  117. Li B, Wei H, Dong S (2007) Chem Commun 73–75

  118. Liss M, Petersen B, Wolf H, Prohaska E (2002) Anal Chem 74(17):4488–4495

    CAS  Google Scholar 

  119. Bini A, Minunni M, Tombelli S, Centi S, Mascini M (2007) Anal Chem 79:3016–3019

    CAS  Google Scholar 

  120. Ikebukuro K, Kiyohara C, Sode K (2005) Biosens Bioelectron 20(10):2168–2172

    CAS  Google Scholar 

  121. Mir M, Vreeke M, Katakis I (2006) Electrochem Commun 8(3):505–511

    CAS  Google Scholar 

  122. Polsky R, Gill R, Kaganovsky L, Willner I (2006) Anal Chem 78(7):2268–2271

    CAS  Google Scholar 

  123. Hianik T, Ostatna V, Zajacova Z, Stoikova E, Evtugyn G (2005) Bioorg Med Chem Lett 15(2):291–295

    CAS  Google Scholar 

  124. Bang GS, Cho S, Kim BG (2005) Biosens Bioelectron 21(6):863–870

    CAS  Google Scholar 

  125. Xiao Y, Arica L, Alan H, Kevin P (2005) Angew Chem Int Ed Engl 44:5456–5459

    CAS  Google Scholar 

  126. Lai R, Plaxco K, Hegger A (2007) Anal Chem 79:229–233

    CAS  Google Scholar 

  127. Radi AE, Acero Sánchez JL, Baldrich E, O’Sullivan CK (2006) J Am Chem Soc 128(1):117–124

    CAS  Google Scholar 

  128. Sánchez JLA, Baldrich E, Radi AEG, Dondapati S, Lozano Sánchez P, Katakis I, O’Sullivan CK (2006) Electroanalysis 18(19–20):1957–1962

    Google Scholar 

  129. Radi AE, O’Sullivan CK (2006) Chem Commun 3432–3434

  130. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) J Am Chem Soc 128(10):3138–3139

    CAS  Google Scholar 

  131. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) J Am Chem Soc 127(51):17990–17991

    CAS  Google Scholar 

  132. Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70(22):4670–4677

    CAS  Google Scholar 

  133. Cai H, Lee TMH, Hsing IM (2006) Sens Actuators Chem 114(1):433–437

    Google Scholar 

  134. Radi AE, Sánchez JLA, Baldrich E, O’Sullivan CK (2005) Anal Chem 77(19):6320–6323

    CAS  Google Scholar 

  135. Xu Y, Yang L, Ye X, He P, Fang Y (2006) Electroanalysis 18(15):1449–1456

    CAS  Google Scholar 

  136. Rodriguez MC, Kawde AN, Wang J (2005) Chem Commun 4267–4269

  137. Löhndorf M, Schlecht U, Gronewold TMA, Malavé A, Tewes M (2005) Appl Phys Lett 87:243902

    Google Scholar 

  138. Xu D, Xu D, Yu X, Liu Z, He W, Ma Z (2005) Anal Chem 77(16):5107–5113

    CAS  Google Scholar 

  139. Zayats M, Huang Y, Gill R, Ma CA, Willner I (2006) J Am Chem Soc 128(42):13666–13667

    CAS  Google Scholar 

  140. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) J Am Chem Soc 128(7):2228–2229

    CAS  Google Scholar 

  141. le Folch F, Ho HA, Leclerc M (2006) Anal Chem 78:4727

    Google Scholar 

  142. So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) J Am Chem Soc 127(34):11906–11907

    CAS  Google Scholar 

  143. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Anal Chem 79:782–787

    CAS  Google Scholar 

  144. Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Electrochem Commun 7(5):537–540

    CAS  Google Scholar 

  145. Centi S, Tombelli S, Minunni M, Mascini M (2007) Anal Chem 79:1466–1473

    CAS  Google Scholar 

  146. Pan T (1997) Curr Opin Chem Biol 1(1):17–25

    CAS  Google Scholar 

  147. Robertson MP, Ellington AD (1999) Nat Biotechnol 17(1):62–66

    CAS  Google Scholar 

  148. Piganeau N, Thuillier V, Famulok M (2001) J Mol Biol 312(5):1177–1190

    CAS  Google Scholar 

  149. Tang J, Breaker RR (1997) Chem Biol 4(6):453–459

    CAS  Google Scholar 

  150. Tang J, Breaker RR (1998) Nucleic Acids Res 26(18):4214–4221

    CAS  Google Scholar 

  151. Soukup GA, Breaker RR (1999) Proc Natl Acad Sci USA 96(7):3584–3589

    CAS  Google Scholar 

  152. Breaker RR (1997) Curr Opin Chem Biol 1(1):26–31

    CAS  Google Scholar 

  153. Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) J Biotechnol 74(1):15–25

    CAS  Google Scholar 

  154. Soukup GA, Breaker RR (2000) Curr Opin Struc Biol 10(3):318–325

    CAS  Google Scholar 

  155. Jaschke A (2001) Curr Opin Struct Biol 11(3):321–326

    CAS  Google Scholar 

  156. Famulok M (2005) Curr Opin Mol Ther 7(2):137–143

    CAS  Google Scholar 

  157. Seetharaman S, Zivarts M, Sudarsan N, Breaker RR (2001) Nat Biotechnol 19(4):336–341

    CAS  Google Scholar 

  158. Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD (2003) Anal Biochem 312(2):106–112

    CAS  Google Scholar 

  159. Hansen KM, Stevenson KA, Thundat T (2004) In: Meeting abstracts

  160. Cho S, Kim JE, Lee BR, Kim JH, Kim BG (2005) Nucleic Acids Res 33(20):e177

    Google Scholar 

  161. Kim MS, Cho SH, Kim BG, Kim YK (2006) Proc SPIE 6036:60360Z

    Google Scholar 

  162. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) J Am Chem Soc 126(38):11768–11769

    CAS  Google Scholar 

  163. Huang CC, Huang YF, Cao Z, Tan W, Chang HT (2005) Anal Chem 77(17):5735–5741

    CAS  Google Scholar 

  164. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Anal Chem 78(9):2918–2924

    CAS  Google Scholar 

  165. Ikanovic M, Rudzinski W, Bruno J, Allman A, Carrillo M, Dwarakanath S, Bhahdigadi S, Rao P, Kiel J, Andrews C (2007) J Fluoresc 17:193–199

    CAS  Google Scholar 

  166. Liu J, Mazumdar D, Lu Y (2006) Angew Chem Int Ed Engl 45:7955–7959

    CAS  Google Scholar 

  167. Lubin A, Lai R, Baker B, Hegger A, Plaxco K (2006) Anal Chem 78:5671–5677

    CAS  Google Scholar 

  168. Burgstaller P, Jenne A, Blind M (2002) Curr Opin Drug Discov Dev 5:690–700

    CAS  Google Scholar 

  169. Proske D, Blank M, Buhmann R, Resch A (2005) Appl Microbiol Biotechnol 69:367–374

    CAS  Google Scholar 

  170. Aptanomics (2007) http://www.aptanomics.com/. Cited 6 Feb 2007

  171. Nascacell Technologies (2007) http://www.nascacell.de/. Cited 6 Feb 2007

  172. Archemix (2007) http://www.archemix.com/. Cited 6 Feb 2007

  173. OSI Pharmaceuticals (2007) http://www.osip.com/macugen_a. Cited 6 Feb 2007

  174. Ng E, Shima D, Colias P, Cunningham E, Guyer D, Adamis A (2006) Nat Rev Drug Discov 5:123–132

    CAS  Google Scholar 

Download references

Acknowledgements

This review has been written as part of the INTERFIBIO: Grup de Recerca de la Interfície físico/biològica, Project Number: 2005SGR-00851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciara K. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mairal, T., Cengiz Özalp, V., Lozano Sánchez, P. et al. Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390, 989–1007 (2008). https://doi.org/10.1007/s00216-007-1346-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1346-4

Keywords

Navigation