Skip to main content
Log in

Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

FTIR spectroscopy has been used to monitor and determine the degree of crystallisation in a sample of polyhydroxybutyrate-co-14%valerate (PHB–co-14%HV). Time series spectra of solution-cast films of the polymer revealed spectral changes attributed to the onset of crystallisation. Curve fitting was used to obtain an absolute measure of crystallinity. Mean centred principal-component analysis (PCA) revealed that 99.9% of the spectral variance could be attributed to factor 1. The loadings plot for factor 1 contained features attributable to crystalline and amorphous phases. These features were opposite in sign, indicating that changes in the spectra with the onset of crystallisation are simultaneous and opposite in direction, i.e. as the crystalline band increases the amorphous band decreases. Cross-peaks in asynchronous 2D correlation maps indicate there are likely to be very minor components that are changing out of phase. The presence of these minor components is supported by examination of the loadings of higher factors in the PCA model. PCA has been shown to be suitable for determining the number of dynamic spectral features and has enabled relative and objective monitoring of crystallisation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson AJ, Dawes EA (1990) Microbiol Rev 54(4):450

    CAS  Google Scholar 

  2. Lee SY (1996) Biotechnol Bioeng 49(1):1

    Article  CAS  Google Scholar 

  3. Chen GQ, Wu Q, Zhao K, Yu PH (2000) Chin J Polym Sci 18(5):389

    CAS  Google Scholar 

  4. Bluhm TL, Hamer GK, Marchessault RM, Fyfe CA, Veregin RP (1986) Macromolecules 19(11):2871

    Article  CAS  Google Scholar 

  5. Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RL (1986) Macromolecules 19(11):2865

    Article  CAS  Google Scholar 

  6. Lambeek G, Vorenkamp EJ, Schouten AJ (1995) Macromolecules 28(6):2023

    Article  CAS  Google Scholar 

  7. Harrison STL, Chase HA, Amor SR, Bonthrone KM, Sanders JKM (1992) Int J Biol Macromol 14(1):50

    Article  CAS  Google Scholar 

  8. Barnard GN, Sanders JM (1989) J Biol Chem 264(6):3286

    CAS  Google Scholar 

  9. Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, Kimura H (1992) FEMS Microbiol Rev 103(2/4):103

    CAS  Google Scholar 

  10. De Koning GM, Lemstra PJ (1992) Polymer 33(15):3292

    Article  Google Scholar 

  11. Zhang J, Harumi S, Noda I, Ozaki Y (2005) Macromolecules 38:4274

    Article  CAS  Google Scholar 

  12. Wu Q, Tian G, Sun S, Noda I, Chen GQ (2001) J Appl Polym Sci 82:934

    Article  CAS  Google Scholar 

  13. Xu J, Guo BH, Yan R, Wu Q, Chen GQ, Zhang ZM (2002) Polymer 43:6893

    Article  CAS  Google Scholar 

  14. Sasic S, Zhang J, Ozaki Y (2007) Vib Spectrosc 44:50–55

    Article  CAS  Google Scholar 

  15. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2004) Polymer 45:6547

    Article  CAS  Google Scholar 

  16. Sato H, Padermshoke A, Nakamura M, Murakami R, Hirose F, Senda K, Terauchi H, Ekgasit S, Noda I, Ozaki Y (2005) Macromol Symp 220:123

    Article  CAS  Google Scholar 

  17. Noda I (1993) Appl Spectrosc 47:1329–1336

    Article  CAS  Google Scholar 

  18. Berry JR, Ozaki Y (2001) 2DCoS Toolbox, Matlab code. Kwansei-Gakuin University, Uegahra, Japan

    Google Scholar 

  19. Adams MJ (1995) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  20. Brereton RG (1993) Chemometrics—application of mathematical and statistics to laboratory systems. Ellis Horwood, New York

    Google Scholar 

  21. The Unscrambler® 7.5, User's guide. CAMO ASA, Oslo, Norway

  22. Bayari S, Severcan F, Gursel I, Hasirci V, Alaeddinoglu G (1998) Biomed Health Res 16:58

    CAS  Google Scholar 

  23. Galego N, Rozsa C, Sanchez R, Fung J, Vazquez A, Tomas JS (2000) Polym Test 19:485

    Article  CAS  Google Scholar 

  24. Padermshoke A, Sato H, Katsumoto Y, Ekgasit S, Noda I, Ozaki Y (2004) Polymer 45:7159–7165

    Article  CAS  Google Scholar 

  25. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Spectrochim Acta A 62:541

    Google Scholar 

  26. He Y, Inoue Y (2000) Polym Int 49(6):623

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is given to the Austrian Science Fund for support of this work, within project no. 15531, and to the Australian Research Council and Monash Graduate Scholarship and travel grant from the Australian Centre of Green Chemistry, School of Chemistry, Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kansiz, M., Domínguez-Vidal, A., McNaughton, D. et al. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Anal Bioanal Chem 388, 1207–1213 (2007). https://doi.org/10.1007/s00216-007-1337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1337-5

Keywords

Navigation