Skip to main content
Log in

Analysis of heterocyclic aromatic amines

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Heterocyclic aromatic amines are formed in protein and amino acid-rich foods at temperatures above 150 °C. Of more than twenty heterocyclic aromatic amines identified ten have been shown to have carcinogenic potential. As nutritional hazards, their reliable determination in prepared food, their uptake and elimination in living organisms, including humans, and assessment of associated risks are important food-safety issues. The concentration in foods is normally in the low ng g−1 range, which poses a challenge to the analytical chemist. Because of the complex nature of food matrixes, clean-up and enrichment of the extracts are also complex, usually involving both cation-exchange (propylsulfonic acid silica gel, PRS) and reversed-phase purification. The application of novel solid-phase extraction cartridges with a wettable apolar phase combined with cation-exchange characteristics simplified this process—both the polar and apolar heterocyclic aromatic amines were recovered in one fraction. Copper phthalocyanine trisulfonate bonded to cotton (“blue cotton”) or rayon, and molecular imprinted polymers have also been successfully used for one-step sample clean-up. For analysis of the heterocyclic aromatic amines, liquid chromatography with base-deactivated reversed-phase columns has been used, and, recently, semi-micro and capillary columns have been introduced. The photometric, fluorimetric, or electrochemical detectors used previously have been replaced by mass spectrometers. Increased specificity and sub-ppb sensitivities have been achieved by the use of the selected-reaction-monitoring mode of detection of advanced MS instrumentation, for example the triple quadrupole and Q-TOF instrument combination. Gas chromatography, also with mass-selective detection, has been used for specific applications; the extra derivatization step needed for volatilization has been balanced by the higher chromatographic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander J, Reistad R, Hegstad S, Frandsen H, Ingebrigsten K, Paulsen JE, Becher G (2002) Food Chem Toxicol 40:113–1137

    Article  Google Scholar 

  2. Alexander J, Wallin H (1991) Metabolic fate of heterocyclic amines in cooked foods. In: Hayatsu H (ed) Mutagens in food: detection and prevention. CRC Press, Boca Raton, FL, pp 143–156

    Google Scholar 

  3. Arvidsson P, vanBoekel MAJS, Skog K, Jägerstad M (1997) J Food Sci 62:911–916

    Article  CAS  Google Scholar 

  4. Augustsson K, Skog K, Jägerstad M, Steineck G (1997) Carcinogenesis 18:1931–1935

    Article  CAS  Google Scholar 

  5. Barceló-Barrachina E, Moyano E, Puignou L, Galceran MT (2004) J Chromatogr B 802:45–59

    Article  CAS  Google Scholar 

  6. Bermudo E, Busquets R, Barcelo-Barrachina E, Puignou L, Santos FJ, Galceran MT (2004) J Chromatogr B 802:61–68

    Article  CAS  Google Scholar 

  7. Bohatsch G (2002) Thesis, Graz University of Technology

  8. Busquets R, Bordas M, Toribio F, Puignou L, Galceran MT (2004) J Chromatogr B 802:79–86

    Article  CAS  Google Scholar 

  9. deMeester C (1998) Z Lebensm Unters Forsch A 207:441–447

    Article  CAS  Google Scholar 

  10. DuPont RL, Baumgartner WA (1995) Forensic Sci Int 70:63–76

    Article  CAS  Google Scholar 

  11. Frandsen H (2007) Food Chem Toxicol 45:863–870

    Article  CAS  Google Scholar 

  12. Frandsen H, Frederiksen H, Alexander J (2002) Food Chem Toxicol 40:1125–1130

    Article  CAS  Google Scholar 

  13. Frederiksen H, Frandsen H (2004) Food Chem Toxicol 42:879–885

    Article  CAS  Google Scholar 

  14. Galceran MT, Pais P, Puignou L (1996) J Chromatogr A 719:203–212

    Article  CAS  Google Scholar 

  15. Galceran MT, Puignou L (2006) Latest developments in the analysis of heterocyclic amines in cooked foods. In: Skog K, Alexander J (eds) Acrylamide and other hazardous compounds in heat-treated foods. Woodhead, Cambridge, 68–116

    Google Scholar 

  16. Gerbl U, Cichna M, Zsivkovits M, Knasmüller S, Sontag G (2004) J Chromatogr B 802:107–114

    Article  CAS  Google Scholar 

  17. Grivas S, Nyhammar T (1985) Mutat Res 142:5–8

    CAS  Google Scholar 

  18. Gross GA, Grüter A, Heyland S (1992) Food Chem Toxic 30:491–498

    Article  CAS  Google Scholar 

  19. Guy PA, Gremaud E, Richoz J, Turesky RJ (2000) J Chromatogr A 883:89–102

    Article  CAS  Google Scholar 

  20. Hashimoto H, Hanaoka T, Kobayashi M, Tsugane S (2004) J Chromatogr B 803:209–213

    Article  CAS  Google Scholar 

  21. Hayatsu H (1992) J Chromatogr 597:37–56

    Article  CAS  Google Scholar 

  22. Hayatsu H, Oka T, Wakata A, Ohara Y, Hayatsu T, Kobayashi H, Arimoto S (1983) Mutat Res 119:233–238

    Article  CAS  Google Scholar 

  23. Herraiz T (2002) Food Add Cont 19:748–754

    Article  CAS  Google Scholar 

  24. IARC (1993) Monographs on the evaluation of carcinogenic risks to humans: some naturally occurring substances: food items and constituents, heterocyclic amines and mycotoxins. IARC 56:165–242

    Google Scholar 

  25. Jägerstad M, Skog K, Arvidsson P, Solyakov A (1998) Z Lebensm Unters Forsch A 207:419–427

    Article  Google Scholar 

  26. Jautz U, Morlock G (2006) J Chromatogr A 1128:244–250

    Article  CAS  Google Scholar 

  27. Kataoka H, Hayatsu T, Hietsch G, Steinkellner H, Nishioka S, Narimatsu S, Knasmüller S, Hayatsu H (2000) Mutat Res 466:27–35

    CAS  Google Scholar 

  28. Kataoka H, Kijima K (1997) J Chromatogr A 767:187–194

    Article  CAS  Google Scholar 

  29. Keating GA, Bogen KT (2004) Food Chem Toxicol 39:29–43

    Article  Google Scholar 

  30. Knize MG, Dolbeare FA, Carroll KL, Moore DH, Felton JS (1994) Food Chem Toxicol 32:595–603

    Article  CAS  Google Scholar 

  31. Knize MG, Salmon CP, Pais P, Felton JS (1999) Adv Exp Med Biol 459:179–193

    CAS  Google Scholar 

  32. Krach C, Sontag G (2000) Anal Chim Acta 417:77–83

    Article  CAS  Google Scholar 

  33. Luftmann H (2004) Anal Bioanal Chem 378:964–968

    Article  CAS  Google Scholar 

  34. Martín-Calero A, Ayala JH, González V, Afonso AM (2007) Anal Chim Acta 582:259–266

    Article  CAS  Google Scholar 

  35. Mayes AG, Mosbach K (1997) Trends Anal Chem 16:321–332

    Article  CAS  Google Scholar 

  36. Murkovic M (2004) J Chromatogr B 802:3–10

    Article  CAS  Google Scholar 

  37. Murkovic M, Friedrich M, Pfannhauser W (1997) Z Lebensm Unters Forsch A 205:347–350

    Article  CAS  Google Scholar 

  38. Murkovic M, Steinberger D, Pfannhauser W (1998) Z Lebensm Unters Forsch A 207:477–480

    Article  CAS  Google Scholar 

  39. Nagao M, Honda M, Seino Y, Yahagi T, Sugimura T (1977) Cancer Lett 2:221–226

    Article  CAS  Google Scholar 

  40. Nagao M, Honda M, Seino Y, Yahagi T, Sugimura T (1977a) Cancer Lett 2:335–339

    Article  CAS  Google Scholar 

  41. Pfau W, Skog K (2004) J Chromatogr B 802:115–126

    Article  CAS  Google Scholar 

  42. Reistad R, Nyholm SH, Haug LS, Becher G, Alexander J (1999) Biomarkers 4:263–271

    Article  CAS  Google Scholar 

  43. Ristic A, Cichna M, Sontag G (2004) J Chromatogr B 802:87–94

    Article  CAS  Google Scholar 

  44. Rohrmann S, Linseisen J, Becker N, Norat T, Sinha R, Skeie G, Lund E, Martinez C, Barricarte A, Mattisson I, Berglund G, Welch A, Davey G, Overvad K, Tjonneland A, Clavelchapelon F, Kesse E, Lotze G, Klipsteingrobusch K, Vasilopoulou E, Polychronopoulos E, Pala V, Celentano E, Buenodemesquita HB, Peeters PHM, Riboli E, Slimani N (2002) Eur J Clin Nutr 56:1216–1230

    Article  CAS  Google Scholar 

  45. Santos FJ, Barcelo E, Toribio F, Puignou L, Galceran MT, Persson E, Skog K, Messner C, Murkovic M, Nabinger U, Ristic A (2004) J Chromatogr B 802:69–78

    Article  CAS  Google Scholar 

  46. Sinha R, Knize MG, Salmon CP, Brown ED, Rhodes D, Felton JS, Levander OA, Rothman N (1998) Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food Chem Toxicol 36:289–297

    Article  CAS  Google Scholar 

  47. Skog K (2004) J Chromatogr B 802:39–44

    Article  CAS  Google Scholar 

  48. Sugimura T (1988) Trends Pharmacol Sci 9:205–209

    Article  CAS  Google Scholar 

  49. Sugimura T (1995) History, present and future, of heterocyclic amines, cooked food mutagens. In: Adamson R H, Gustafsson A, Ito N, Nagao M, Sugimura T, Wakabyashi K, Yamazoe Y, Proceedings of the 23rd International Symposium of the Princess Takamatsu Cancer Research Fund, Tokyo, Princeton Scientific, pp 214–231

  50. Sugimura T (1997) Mutat Res 376:211–219

    CAS  Google Scholar 

  51. Sugimura T, Nagao M, Kawachi T, Honda M, Yahagi T, Seino Y, Sato S, Matsukura M, Matsushima T, Shirai A, Sawamura M, Matsumoto M (1977) Mutagens-carcinogens in foods with special reference to highly mutagenic pyrolytic products in broiled foods. In: Hiatt HH, Watson JD, Winsten JA (eds) Origin of human cancer. Cold Spring Harbour Laboratory, Cold Spring Harbour, pp 1561–1577

    Google Scholar 

  52. Strickland PT, Qian Z, Friesen MD, Rothman N, Sinha R (2001) Biomarkers 6:313–325

    Article  CAS  Google Scholar 

  53. Takahashi M, Wakabayashi K, Nagao M, Yamamoto M, Masui T, Goto T, Kinae N, Tomita I, Sugimura T (1985) Carcinogenesis 6:1195–1199

    Article  CAS  Google Scholar 

  54. Toribio F, Busquets R, Puignou L, Galceran MT (2007) Food Chem Toxicol 45:667–675

    Article  CAS  Google Scholar 

  55. Toribio F, Moyano E, Puignou L, Galceran MT (2002) J Chromatogr A 948:267–281

    Article  CAS  Google Scholar 

  56. Turesky RJ, Taylor J, Schnackenberg L, Freeman JP, Holland RD (2005) J Agric Food Chem 53:3248–3258

    Article  CAS  Google Scholar 

  57. Turteltaub KW, Felton JS, Gledhill BL, Vogel JS, Southon JR, Caffee MW, Finkel RC, Nelson DE, Proctor ID, Davis JC (1990) Proc Natl Acad Sci USA 87:5288–5292

    Article  CAS  Google Scholar 

  58. Turteltaub KW, Dingley KH, Curtis KD, Malfatti MA, Turesky RJ, Colin Garner R, Felton JS, Lang NP (1999) Cancer Letters 143:149–155

    Article  CAS  Google Scholar 

  59. Viberg P, Nilsson S, Skog K (2004) Anal Bioanal Chem 378:1729–1734

    Article  CAS  Google Scholar 

  60. Viberg P, Wahlund KG, Skog K (2006) J Chromatogr A 1133:347–532

    Article  CAS  Google Scholar 

  61. Wakabayashi K, Kim I-S, Kurosaka R, Yamaizumi Z, Ushiyama H, Takahashi M, Koyota S, Fecuda A, Nukaya H, Goto S, Sugimura T, Nagao M (1995) Identification of new mutagenic heterocyclic amines and quantification of known heterocyclic amines. In: Adamson PH, Gustavsson JA, Ito N, Nagao M, Sugimura T, Wakabayashi K, Yamazoe Y (eds) Heterocyclic amines in cooked foods: possible human carcinogens. Princeton Scientific Publishing, Princeton, pp 39–49

    Google Scholar 

  62. Wakabayashi K, Totsuka Y, Fukutome K, Oguri A, Ushiyama H, Sugimura T (1997) Mutat Res 376:253–259

    CAS  Google Scholar 

  63. Widmark E (1939) Nature 143:984

    Google Scholar 

  64. Zimmerli B, Rhyn P, Zoller O, Schlatter J (2001) Food Add Contam 18:533–551

    Article  CAS  Google Scholar 

  65. Zöchling S, Murkovic M (2002) Food Chem 79:125–134

    Article  Google Scholar 

  66. Zöchling S, Murkovic M, Pfannhauser W (2002) J Biochem Biophys Methods 53:37–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Murkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murkovic, M. Analysis of heterocyclic aromatic amines. Anal Bioanal Chem 389, 139–146 (2007). https://doi.org/10.1007/s00216-007-1306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1306-z

Keywords

Navigation