Skip to main content
Log in

Detection of flavonoids and assay for their antioxidant activity based on enlargement of gold nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report our findings that natural flavonoids such as quercetin, daizeol and puerarin can act as reductants for the enlargement of gold nanoparticles (Au-NPs). Consequently, the UV–vis spectra of a solution containing Au-NPs will be gradually changed, and the molecules of the natural herbs can be detected by making use of changes in the UV–visible spectra. Furthermore, we have prepared a self-assembled monolayer modified electrode by modifying cysteamine on a gold substrate electrode, which is further modified by some Au-NP seeds. When the modified electrode is immersed in a solution containing flavonoids and tetrachloroauric acid as a gold source for the growth of the Au-NP seeds, with the increase of the concentration of flavonoids, the Au-NP seeds on the surface of the modified electrode can be enlarged to varying degrees. As a result, the peak currents in the corresponding cyclic voltammograms are inversely decreased, and simultaneously the peak separation is increased. Therefore, an electrochemical method to detect flavonoids is also proposed. Compared with the optical detection method, the electrochemical method has an extraordinarily lower detection limit and a significantly extended detection range. Moreover, the optical and electrochemical experimental results can be also used to assay and compare the relative antioxidant activities of the flavonoids.

Enlargement of Au nanoparticles by flavonoids at cysteamine modified electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis LN (1993) Chem Rev 93:2693–2730

    Article  CAS  Google Scholar 

  2. Haruta M, Daté M (2001) Appl Catal A 222:427–437

    Article  CAS  Google Scholar 

  3. Chan WCW, Nie SM (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  4. Nicewarner Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137–141

    Article  Google Scholar 

  5. Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  6. Zayats M, Baron R., Popov I, Willner I (2005) Nano Lett 5:21–25

    Article  CAS  Google Scholar 

  7. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Angew Chem Int Ed Engl 43:4519–4522

    Article  CAS  Google Scholar 

  8. Zayats M, Baron R, Popov I, Willner I (2005) Anal Chem 77:1566–1571

    Article  CAS  Google Scholar 

  9. Xiao Y, Pavlov V, Shlyahovsky B, Willner I (2005) Chem Eur J 11:2698

    Article  CAS  Google Scholar 

  10. Zhou N, Wang J, Chen T, Yu Z, Li G, (2006) Anal Chem 78:5227–5230

    Article  CAS  Google Scholar 

  11. Scampicchio M, Wang J, Blasco AJ, Arribas AS, Mannino S, Escarpa A (2006) Anal Chem 78:2060–2063

    Article  CAS  Google Scholar 

  12. Block G (1992) Nutr Rev 50:207–213

    Article  CAS  Google Scholar 

  13. Block G, Langseth L (1994) Food Technol July 80–84

  14. Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, Dharmarajan A, Arunakaran J (2006) Oncol Res 16:67–74

    CAS  Google Scholar 

  15. Jenkins DJA, Kendall CWC, Ransom TPP (1998) Nutr Res 18:633–652

    Article  CAS  Google Scholar 

  16. American Association of Cereal Chemists (AACC) (2001) Cereal Foods World 46:112–126

    Google Scholar 

  17. Catherine A, Evans R, Miller N, Paganga G (1996) Free Radic Bio Med 20:933–956

    Article  Google Scholar 

  18. Robards K, Antolovich M (1997) Analyst 122:20R

    Article  Google Scholar 

  19. Paul AK, Onglei Z, Andrew LW (2001) J Agric Food Chem 49:1957–1965

    Article  CAS  Google Scholar 

  20. Mannino S, Brenna O, Buratti S, Cosio MS (1998) Electroanalysis 10:908

    Article  CAS  Google Scholar 

  21. Resüat A, Kubilay G, Mustafa O, Saliha EK (2004) J Agric Food Chem 52:7970–7981

    Article  CAS  Google Scholar 

  22. Cao G, Sofic E, Prior RL (1996) J Agric Food Chem 44:3426

    Article  CAS  Google Scholar 

  23. Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701

    Article  CAS  Google Scholar 

  24. Busbee BD, Obare SO, Murphy CJ (2003) Adv Mater 15:414–416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 90406005, 20575028) and the Program for New Century Excellent Talents in University, the Chinese Ministry of Education (NCET-04-0452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhou, N., Zhu, Z. et al. Detection of flavonoids and assay for their antioxidant activity based on enlargement of gold nanoparticles. Anal Bioanal Chem 388, 1199–1205 (2007). https://doi.org/10.1007/s00216-007-1295-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1295-y

Keywords

Navigation