Skip to main content
Log in

Thiourea catalysis of MeHg ligand exchange between natural dissolved organic matter and a thiol-functionalized resin: a novel method of matrix removal and MeHg preconcentration for ultratrace Hg speciation analysis in freshwaters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultratrace analysis of dissolved MeHg in freshwaters requires both dissociation of MeHg from strong ligands in the sample matrix and preconcentration for detection. Existing solid phase extraction methods generally do not efficiently adsorb MeHg from samples containing high concentrations of natural dissolved organic matter. We demonstrate here that the addition of 10–60 mM thiourea (TU) quantitatively releases MeHg from the dissolved matrix of freshwater samples by forming a more labile complex (MeHgTU+) that quantitatively exchanges MeHg with thiol-functionalized resins at pH∼3.5 during column loading. The contents of these columns were efficiently eluted with acidified TU and MeHg was analyzed by Hg–TU complex ion chromatography with cold-vapor atomic fluorescence spectrometry detection. Routinely more than 90% of MeHg was recovered with good precision (average relative standard deviation of 6%) from natural waters—obtained from pools and saturated sediments of wetlands and from rivers—containing up to 68.7 mg C L−1 dissolved organic matter. With the preconcentration step, the method detection limit of 0.29 pg absolute or 0.007 ng L−1 in 40-mL samples is equivalent to that of the current state-of-the- art as practiced by skilled analysts. MeHg in 20–50-mL samples was completely trapped. On the basis of our knowledge of the chemistry of the process, breakthrough volume should depend on the concentrations of TU and H+. At a TU concentration of 12 mM breakthrough occurred between 50 and 100 mL, but overall adsorption efficiency was still 85% at 100 mL. Formation of artifactual MeHg is minimal; only about 0.7% of ambient MeHg is artifactual as estimated from samples spiked with 4 μg L−1 HgII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watras C, Bloom N (1992) Limnol Oceanogr 37:1313–1318

    Google Scholar 

  2. Bloom N, Colman J, Barber L (1997) Fresenius J Anal Chem 358:371–377

    Article  CAS  Google Scholar 

  3. O’Driscoll N, Evans R (2000) Environ Sci Technol 34:4039–4043

    Article  CAS  Google Scholar 

  4. Amirbahman A, Reid A, Haines T, Kahl J, Arnold C (2002) Environ Sci Technol 36:690–695

    Article  CAS  Google Scholar 

  5. Zhang J, Wang F, House J, Page B (2004) Limnol Oceanogr 49:2276–2286

    Article  CAS  Google Scholar 

  6. Hudson R, Gherini S, Watras C, Porcella D (1994) In: Watras C, Huckabee J (eds) Mercury pollution: integration and synthesis. Lewis, Boca Raton, pp 473–523

    Google Scholar 

  7. Watras C, Back R, Halvorsen S, Hudson R, Morrison K, Wente S (1998) Sci Total Environ 219:183–208

    Article  CAS  Google Scholar 

  8. Babiarz C, Hurley J, Benoit J, Shafer M, Andren A, Webb D (1998) Biogeochemistry 41:237–257

    Article  CAS  Google Scholar 

  9. Ravichandran M (2004) Chemosphere 55:319–331

    Article  CAS  Google Scholar 

  10. Horvat M, Lian L, Bloom N (1993) Anal Chim Acta 282:153–168

    Article  CAS  Google Scholar 

  11. USEPA (1998) Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. US Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division, Washington

  12. Law S (1971) Science 174:285–287

    Article  CAS  Google Scholar 

  13. Bagheri H, Gholami A (2001) Talanta 55:1141–1150

    Article  CAS  Google Scholar 

  14. Salih B, Say R, Denizli A, Genc O, Piskin E (1998) Anal Chim Acta 371:177–185

    Article  CAS  Google Scholar 

  15. Emteborg H, Baxter D, Frech W (1993) Analyst 118:1007–1013

    Article  CAS  Google Scholar 

  16. Chwastowska J, Rogowska A, Sterlinska E, Dudek J (1999) Talanta 49:837–842

    Article  CAS  Google Scholar 

  17. Rudner P, de Torres A, Pavon J, Rojas F (1998) Talanta 46:1095–1105

    Article  CAS  Google Scholar 

  18. Lee Y, Mowrer J (1989) Anal Chim Acta 221:259–268

    Article  CAS  Google Scholar 

  19. Clarisse O, Hintelmann H (2006) J Environ Monit 8:1242–1247

    Article  CAS  Google Scholar 

  20. Cai Y, Jaffe R, Alli A, Jones R (1996) Anal Chim Acta 334:251–259

    Article  CAS  Google Scholar 

  21. Munoz J, Gallego M, Valcarcel M (2005) Anal Chim Acta 548:66–72

    Article  CAS  Google Scholar 

  22. Falter R, Scholer H (1995) Fresenius J Anal Chem 353:34–38

    Article  CAS  Google Scholar 

  23. Blanco R, Villanueva M, Uria J, Sanz-Medel A (2000) Anal Chim Acta 419:137–144

    Article  CAS  Google Scholar 

  24. Qvarnstrom J, Tu Q, Frech W, Ludke C (2000) Analyst 125:1193–1197

    Article  CAS  Google Scholar 

  25. Castillo A, Roig-Navarro A, Pozo O (2006) Anal Chim Acta 577:18–25

    Article  CAS  Google Scholar 

  26. Shade C, Hudson R (2005) Environ Sci Technol 39:4974–4982

    Article  CAS  Google Scholar 

  27. Antochshuk V, Jaroniec M (2002) Chem Commun 258–259

  28. Oshita K, Oshima M, Gao Y, Lee K-H, Motomizu S (2002) Anal Sci 18:1121–1125

    Article  CAS  Google Scholar 

  29. Antochshuk V, Olkhovyk O, Jaroniec M, Park I-S, Ryoo R (2003) Langmuir 19:3031–3034

    Article  CAS  Google Scholar 

  30. Olkhovyk O, Antochshuk V, Jaroniec M (2004) Colloids Surf A 236:69–72

    Article  CAS  Google Scholar 

  31. Minagawa K, Takizawa Y, Kifune I (1980) Anal Chim Acta 115:103–110

    Article  CAS  Google Scholar 

  32. Fontas C, Hidalgo M, Salvado V, Antico E (2005) Anal Chim Acta 547:255–261

    Article  CAS  Google Scholar 

  33. Krishna M, Karunasagar D, Rao S, Arunachalam J (2005) Talanta 68:329–335

    Article  CAS  Google Scholar 

  34. Celo V, Ananth R, Scott S, Lean D (2004) Anal Chim Acta 516:171–177

    Article  CAS  Google Scholar 

  35. Tekran (2002) Model 2500 CVAFS mercury detector user manual. Tekran, Toronto

    Google Scholar 

  36. Frontier Geosciences (1997) Protocol for sampling waters for MeHg analysis

  37. USGS (1999) National field manual for the collection of water-quality data. US Geological Survey, Reston, chap A5

    Google Scholar 

  38. Robbins J, Gustinis J (1976) Limnol Oceanogr 21:905–909

    Article  Google Scholar 

  39. APHA (1998) Standard methods: for examination of water and wastewater, 20th edn. APHA, Washington

    Google Scholar 

  40. Giambalvo E (1996) A new method for modeling coupled equilibrium and nonequilibrium chemical reactions. Thesis, University of California, Santa Cruz

  41. Dyrssen D, Wedborg M (1991) Water Air Soil Pollut 56:507–519

    Article  Google Scholar 

  42. Cheeseman B, Arnold A, Rabenstein D (1988) J Am Chem Soc 110:6359–6364

    Article  Google Scholar 

  43. Piccolo A, Nardi S, Concheri C (1996) Chemosphere 33:595–602

    Article  CAS  Google Scholar 

  44. Haitzer M, Aiken G, Ryan J (2002) Environ Sci Technol 36:3564–3570

    Article  CAS  Google Scholar 

  45. USEPA (1995) Method 40 CFR 136 appendix B: definition and procedure for the determination of the method detection limit. US Environmental Protection Agency, Office of Water, Washington

    Google Scholar 

  46. Huang J-H (2005) Anal Chim Acta 532:113–120

    Article  CAS  Google Scholar 

  47. NIST (2001) NIST standard reference database 46 v 6.0: NIST critically selected stability constants of metal complexes. NIST, Gaithersburg

    Google Scholar 

  48. USGS (2002) Scientific investigation report 2005-5034: mercury in the Grand Calumet River/Indiana Harbor Canal and Lake Michigan, Lake County, Indiana. US Geological Survey, Reston

    Google Scholar 

  49. Branfireun B (2004) Wetlands 24:207–211

    Article  Google Scholar 

Download references

Acknowledgements

The National Great Rivers Research and Education Center in Alton, IL, USA and the Illinois–Indiana Sea Grant College Program funded this work. Thanks are due to C. Shade for instruction in use of the analytical system, currently of Quicksilver Scientific (Lafayette, CO, USA), to W. Wimer for assistance with GCAOC field work, to personnel at the Indiana Dunes National Lakeshore and the Indiana Department of Natural Resources for granting permissions to sample GCAOC wetlands, and to two anonymous reviewers for making helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Vermillion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermillion, B.R., Hudson, R.J.M. Thiourea catalysis of MeHg ligand exchange between natural dissolved organic matter and a thiol-functionalized resin: a novel method of matrix removal and MeHg preconcentration for ultratrace Hg speciation analysis in freshwaters. Anal Bioanal Chem 388, 341–352 (2007). https://doi.org/10.1007/s00216-007-1207-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1207-1

Keywords

Navigation