Skip to main content

Advertisement

Log in

An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A carbon nanotube paste (CNTP) electrode and a carbon nanotube paste/glucose oxidase (CNTP/GOx) electrode were prepared, and the electrochemiluminescent (ECL) behavior of luminol in the presence of glucose was investigated in detail at each of these electrodes. Compared to the classical carbon paste (CP) electrode, the CNTP electrode incorporating glucose oxidase greatly enhanced the response of the ECL sensor to glucose due to the electrocatalytic activity of the carbon nanotubes, the specificity of the enzymatic reaction, and the sensitivity of the luminol ECL reaction. Under optimal conditions, the electrode was found to respond linearly to glucose in the concentration range 1.0 × 10−6~2.0 × 10−3 mol/L, and the detection limit (defined as the concentration that can be detected at a signal-to-noise ratio of 3) was found to be a glucose concentration of 5.0 × 10−7 mol/L. The method used to prepare the CNTP/GOx electrode was very convenient, and the electrode surface could be renewed in the case of fouling by simply polishing or cutting it to expose a new and fully active surface. The relative standard deviations (RSD) were found to be 6.8% and 8.9% for the CNTP electrode and the CNTP/GOx electrode (n = 6). The electrode retained 95% of its initial response after two weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hiura H, Ebbesen TW, Tanigaki K (1995) Adv Mater 7:275–279

    Article  CAS  Google Scholar 

  2. Li Q, Luo GA (1999) Sens Actuators B 59:42–49

    Article  Google Scholar 

  3. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279–282

    Article  CAS  Google Scholar 

  4. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  5. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electroanalysis 14:225–227

    Article  CAS  Google Scholar 

  6. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  7. Wang ZH, Liu J, Liang QL, Wang YM, Lou G (2002) Analyst 127:653–658

    Article  CAS  Google Scholar 

  8. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997

    Article  CAS  Google Scholar 

  9. Zhao YD, Zhang WD, Chen H, Luo QM (2003) Sens Actuators B 92:279–283

    Article  Google Scholar 

  10. Cao XN, Lin L, Xian YZ, Zhang W, Xie YF, Jin LT (2003) Electroanalyis 15:892–895

    Article  CAS  Google Scholar 

  11. Lawrence NS, Deo RP, Wang J (2004) Talanta 63:443–449

    Article  CAS  Google Scholar 

  12. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  13. Valentini F, Amine A (2003) Anal Chem 75:5413–5421

    Article  CAS  Google Scholar 

  14. Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  15. Marra L, Pedano E (2004) Electrochem Commun 6:10–16

    Article  Google Scholar 

  16. Chicharro M, Sanchez A (2005) Anal Chim Acta 543:84–91

    Google Scholar 

  17. Salimi A, Compton RG, Hallaj R (2004) Anal Biochem 333:49–54

    Article  CAS  Google Scholar 

  18. Wu BL, Zhang GM (2004) Talanta 64:546–553

    Article  CAS  Google Scholar 

  19. Pandey PC, Upadhyay S (2003) Biosens Bioelectron 18:1257–1268

    Google Scholar 

  20. Satoa Y, Katob D (2005) Sens Actuators B 108:617–621

    Google Scholar 

  21. Xu GB, Zhang JZ (1999) J Microchem 62:259–265

    Article  CAS  Google Scholar 

  22. Marquette CA, Blum LJ (1999) Anal Chim Acta 381:1–10

    Google Scholar 

  23. Zhu LD, Li YX (2002) Sens Actuators B 84:265–270

    Google Scholar 

  24. White BJ, Harmon HJ (2002) Biochem Biophysical Commun 296:1069–1071

    Article  CAS  Google Scholar 

  25. Luque GL, Rodríguez MC, Rivas GA (2005) Talanta 66:467–471

    Google Scholar 

  26. Wang J, Musameh M (2003) Anal Chem 75:2075–2079

    Article  CAS  Google Scholar 

  27. Tsang SC, Chen YK (1994) Nature 372:10–14

    Google Scholar 

  28. Sljukic B, Banks CE, Compton RG (2006) Nano Lett 6:1557–1561

    Google Scholar 

  29. Cui H, Zhang ZF (2004) J Electroanal Chem 566:305–313

    Google Scholar 

  30. Corgier BP, Marquette CA (2005) Anal Chim Acta 538:1–7

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Nature Sciences Funding of China (20575011), and the Specialized Research Fund for the Doctoral Program of Higher Education (20040386002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guonan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Lin, Z. & Chen, G. An electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode. Anal Bioanal Chem 388, 399–407 (2007). https://doi.org/10.1007/s00216-007-1202-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1202-6

Keywords