Determination of major and trace elements in human scalp hair by pressurized-liquid extraction with acetic acid and inductively coupled plasma–optical-emission spectrometry


An analytical method has been developed for determination of major (Ca, K, Mg, and Na) and trace elements (As, Cd, Co, Li, Ni, and Sr) in human scalp hair. The proposed method includes a novel, simple, rapid, highly efficient, and automated metal-leaching procedure, by pressurized-liquid extraction (PLE), combined with a rapid simultaneous detection system—inductively coupled plasma–optical-emission spectrometry (ICP–OES). PLE is one of the most promising recently introduced sample-preparation techniques, with the advantages of reducing solvent consumption and enabling automated sample handling. The operating conditions for PLE, including concentration of the extraction solvent, extraction temperature, static time, number of extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio, and flush volume were studied using an experimental design (Plackett–Burman design, PBD). The optimum conditions were use of 0.75 mol L−1 acetic acid as extracting solution and powdered hair samples thoroughly mixed with DE, as a dispersing agent, at a DE mass/sample mass ratio of 4. Extraction was performed at room temperature and an extraction pressure of 140 atm for 5 min in one extraction step. The flush volume was fixed at 60%. The PLE-assisted multi-element leaching proposed is complete after 7 min (5 min static time plus 1 min purge time plus 1 min end relief time). Under the optimised conditions the figures of merit, for example limits of detection and quantification, repeatability of the over-all procedure, and accuracy, were evaluated. Analysis of GBW-07601 (human hair) certified reference material revealed accuracy was good for the target elements. The optimised method was finally applied to several human scalp-hair samples.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Bencze K (2002) Fresenius J Anal Chem 338:58–61

    Article  Google Scholar 

  2. 2.

    Bermejo-Barrera P, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera AM (2002) Anal Chim Acta 455:253–265

    Article  CAS  Google Scholar 

  3. 3.

    Kales SN, Christiani DC (2005) In: Tobin DJ (ed) Hair and metal toxicology. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  4. 4.

    Druyan ME, Bass D, Puchyr R, Urek K, Quig D, Harmon E, Marquardt W (1998) Biol Trace Elem Res 62:183–197

    CAS  Google Scholar 

  5. 5.

    McNeill FE, Chettle DR (1998) Appl Radiat Isot 49:699–700

    Article  CAS  Google Scholar 

  6. 6.

    Cao L, Tian W, Ni B, Wang P, Zhang Y (2002) Anal Bioanal Chem 372:397–400

    Article  CAS  Google Scholar 

  7. 7.

    Bermejo-Barrera P, Muñiz-Naveiro O, Moreda-Piñeiro A, Bermejo-Barrera A (2000) Forensic Sci Int 107:105–120

    Article  CAS  Google Scholar 

  8. 8.

    Wang CT, Chang WT, Jeng LH, Liu PE, Liu LY (2005) J Health Sci 51:70–74

    Article  CAS  Google Scholar 

  9. 9.

    Shah MH, Shaheen N, Khalique A, Alrabti A, Jaffar M (2006) Environ Monit Assess 114:505–519

    Article  CAS  Google Scholar 

  10. 10.

    Bermejo-Bermejo P, Fernández-Nocelo S, Moreda-Piñeiro A, Bermejo-Barrera A (1999) J Anal At Spectrom 14:1893–1900

    Article  Google Scholar 

  11. 11.

    Bermejo-Barrera P, Moreda-Piñeiro A, Bermejo-Barrera A (2000) J Anal At Spectrom 15:121–130

    Article  CAS  Google Scholar 

  12. 12.

    Kamogawa MY, Nogueira ARA, Costa LM, García EE, Lóbrega JA (2001) Spectrochim Acta B 56:1973–1980

    Article  Google Scholar 

  13. 13.

    Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Clin Chim Acta 369:52–60

    Article  CAS  Google Scholar 

  14. 14.

    Erk M, Raspor B (2001) J Electroanal Chem 502:174–179

    Article  CAS  Google Scholar 

  15. 15.

    Bonfil Y, Kirowa-Eisner E (2002) Anal Chim Acta 457:285–296

    Article  CAS  Google Scholar 

  16. 16.

    Arancibia V, Alarcón L, Segura R (2004) Anal Chim Acta 502:189–194

    Article  CAS  Google Scholar 

  17. 17.

    D’Ilio S, Violante N, Senofonte O, Carola S (2000) Microchem J 67:343–349

    Article  CAS  Google Scholar 

  18. 18.

    Sreenivasa K, Balaji T, Prasada T, Babu Y, Naidu GRK (2002) Spectrochim Acta B 57:1333–1338

    Article  Google Scholar 

  19. 19.

    Chojnacka K, Gorecka H, Chojnacki A, Gorecki H (2005) Environ Toxicol Pharm 20:368–374

    Article  CAS  Google Scholar 

  20. 20.

    Forte G, Alimonti A, Violante N, Di Gregorio M, Senofonte O, Petrucci F, Sancesario G, Bocca B (2005) J Trace Elem Med Biol 19:195–201

    Article  CAS  Google Scholar 

  21. 21.

    Morton J, Carolan VA, Gardiner PHE (2002) Anal Chim Acta 455:23–34

    Article  CAS  Google Scholar 

  22. 22.

    Petrucci F, Violante N, Senofonte O, De Gregorio M, Alimonti A, Caroli S, Forte G, Cristaudo A (2004) Microchem J 79:131–140

    Article  Google Scholar 

  23. 23.

    Ming Y, Bing L (1998) Spectrochim Acta B 53:14471454

    Article  Google Scholar 

  24. 24.

    Canada-Rudner P, García de Torres A, Cano-Pavón JM, Rodríguez-Castellón E (1998) J Anal At Spectrom 13:243–248

    Article  Google Scholar 

  25. 25.

    Almeida AA, Jun X, Lima JLFC (1999) Talanta 50:253–259

    Article  CAS  Google Scholar 

  26. 26.

    Richter BE, Jones BA, Ezzel JL, Porter NL, Avdalovic N, Pohl C (1996) Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  27. 27.

    Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J (2005) J Chromatogr A 1089:1–17

    Article  Google Scholar 

  28. 28.

    Alonso-Rodríguez E, Moreda-Piñeiro J, López-Mahía P, Prada-Rodríguez D, Fernández-Fernández E, Muniategui-Lorenzo S, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2006) Trends Anal Chem 25:511–519

    Article  Google Scholar 

  29. 29.

    Moreda-Piñeiro J, Alonso-Rodríguez E, López-Mahía P, Muniategui-Lorenzo S, Fernández-Fernández E, Prada-Rodríguez D, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2006) Anal Chim Acta 572:172–179

    Article  Google Scholar 

  30. 30.

    Multiwave P-E (1998) Sample preparation system operator’s handbook. Anton Paar, Graz, Austria

    Google Scholar 

  31. 31.

    Chatt A, Katz SA (1988) Hair analysis. VCH, New York

    Google Scholar 

  32. 32.

    Dionex (1999) ASE200 accelerated solvent extraction operator’s manual. Dionex, Sunnyvale, CA, USA

    Google Scholar 

  33. 33.

    Gallagher PA, Murray S, Wei X, Schwegel CA, Creed JT (2002) J Anal At Spectrom 17:581–586

    Article  CAS  Google Scholar 

  34. 34.

    Gardiner WP, Gettinby G (1998) Experimental design techniques in statistical practices, a practical software-based approach. Horwood, West Sussex, UK

    Google Scholar 

  35. 35.

    Gallagher PA, Shoemaker JA, Wei X, Brockhoff-Schwegel CA, Creed JT (2001) Fresenius J Anal Chem 369:71–80

    Article  CAS  Google Scholar 

  36. 36.

    Hinners TA, Terrill WJ, Kent JL, Colucci AV (1974) Environ Health Perspect 8:191–199

    Article  CAS  Google Scholar 

  37. 37.

    Bencze K (1990) Fresenius J Anal Chem 337:867–876

    Article  CAS  Google Scholar 

Download references


The authors thank the Consellería de Educación y Ordenación Universitaria, Xunta de Galicia for financially supporting (PR405A, 2001/25-0) purchase of the Dionex ASE-200 system. The authors thank Servicios Xerais de Apoio a Investigación (Universidad de A Coruña) for the technical support offered.

Author information



Corresponding author

Correspondence to Jorge Moreda-Piñeiro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moreda-Piñeiro, J., Alonso-Rodríguez, E., López-Mahía, P. et al. Determination of major and trace elements in human scalp hair by pressurized-liquid extraction with acetic acid and inductively coupled plasma–optical-emission spectrometry. Anal Bioanal Chem 388, 441–449 (2007).

Download citation


  • PLE
  • Acetic acid
  • Major and trace elements
  • Human scalp hair