Analytical and Bioanalytical Chemistry

, Volume 387, Issue 7, pp 2343–2355 | Cite as

Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

  • David PointEmail author
  • W. Clay Davis
  • Steven J. Christopher
  • Michael B. Ellisor
  • Rebecca S. Pugh
  • Paul R. Becker
  • Olivier F. X. Donard
  • Barbara J. Porter
  • Stephen A. Wise
Original Paper


An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography–inductively coupled plasma-mass spectrometry (SID-GC–ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g−1 level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials—a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 ± 0.06, 2.7 ± 0.4, and 6.58 ± 0.19 ng g−1 as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 ± 0.06, 1.19 ± 0.26, and 3.55 ± 0.44 ng g−1, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 ± 2.7 and 2.26 ± 0.38 ng g−1 as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are a promising alternative to conventional freeze-dried materials for organotin speciation analysis, because these are, at present, the best conditions for minimizing degradation of thermolabile species and for long-term archival. Finally, the potential of the analytical method was illustrated by analysis of polar bear (Ursus maritimus) and beluga whale (Delphinapterus leuca) liver samples that had been collected in the Arctic and archived at the Marine Environmental Specimen Bank. Significant concentrations of butyltin compounds were found in the samples and provide the first evidence of the presence of this class of contaminant in the Arctic marine ecosystem.


Eye catch image


Speciation Tributyltin ICPMS Isotope dilution Specimen bank Standard reference material (SRM) 



The authors acknowledge LGC Ltd (Teddington, UK) for providing the enriched TBT and DBT standard as part of an international intercomparison exercise. The development of the marine mammal SRMs and control materials and the Marine ESB samples used in this paper involved numerous individuals and organizations including the National Marine Fisheries Service’s Marine Mammal Health and Stranding Response Program, New England Aquarium, Wayne McFee of the National Oceanic and Atmospheric Administration, U.S. Geological Survey’s Alaska Science Center, North Slope Borough Department of Wildlife Management, and Todd O’Hara of the University of Alaska Fairbanks.


  1. 1.
    Ueno D, Inoue S, Takahashi S, Ikeda K, Tanaka H, Subramanian AN, Fillmann G, Lam PKS, Zheng J, Muchtar M (2004) Environ Pollut 127:1–12CrossRefGoogle Scholar
  2. 2.
    Nishikawa Ji, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T (2004) Environ Sci Technol 38:6271–6276CrossRefGoogle Scholar
  3. 3.
    Wade TL, Garcia-Romero B, Brooks J (1988) Environ Sci Technol 22:1488–1493CrossRefGoogle Scholar
  4. 4.
    Hai Le LT, Takahashi S, Saeki K, Nakatani N, Tanabe S, Miyazaki N, Fujise Y (1999) Environ Sci Technol 33:1781–1786CrossRefGoogle Scholar
  5. 5.
    Encinar JR, Alonso JIG, Sanz-Medel A (2000) J Anal Atom Spectrom 15:1285CrossRefGoogle Scholar
  6. 6.
    Encinar JR, Villar MIM, Santamaria VG, Alonso JIG, Sanz-Medel A (2001) Anal Chem 73:3174–3180CrossRefGoogle Scholar
  7. 7.
    Monperrus M, Martin-Doimeadios RCR, Scancar J, Amouroux D, Donard OFX (2003) Anal Chem 75:4095–4102CrossRefGoogle Scholar
  8. 8.
    Monperrus M, Zuloaga O, Krupp E, Amouroux D, Wahlen R, Fairman B, Donard OFX (2003) J Anal Atom Spectrom 18:247–253CrossRefGoogle Scholar
  9. 9.
    Rodriguez-Gonzalez P, Marchante-Gayon JM, Alonso JIG, Sanz-Medel A (2005) Spectrochim Acta B 60:151–207CrossRefGoogle Scholar
  10. 10.
    Yang L, Mester Z, Sturgeon RE (2003) Can J Anal Sci Spectrosc 48:211–218Google Scholar
  11. 11.
    Sturgeon RE, Wahlen R, Brandsch T, Fairman B, Wolf-Briche C, Alonso JIG, Gonzalez PR, Encinar JR, Sanz-Medel A, Inagaki K, Takatsu A, Lalere B, Monperrus M, Zuloaga O, Krupp E, Amouroux D, Donard OFX, Schimmel H, Sejeroe-Olsen B, Konieczka P, Schultze P, Taylor P, Hearn R, Mackay L, Myors R, Win T, Liebich A, Philipp R, Yang L, Willie S (2003) Anal Bioanal Chem 376:780–787CrossRefGoogle Scholar
  12. 12.
    Quevauvillier P, Morabito R, Ebdon L, Cofino W, Muntau H, Campbell MJ (1997) IRMM: LuxembourgGoogle Scholar
  13. 13.
    Shawky S, Emons H (1998) Chemosphere 36:523–535CrossRefGoogle Scholar
  14. 14.
    Emons H, Schladot JD, Schwuger MJ (1997) Chemosphere 34:1875–1888CrossRefGoogle Scholar
  15. 15.
    Zeisler R, Langland JK, Harrison SH (1983) Anal Chem 55:2431–2434CrossRefGoogle Scholar
  16. 16.
    Wise SA, Benner BA, Christensen RG, Koster BJ, Kurz J, Schantz MM, Zeisler R (1991) Environ Sci Technol 25:1695–1704CrossRefGoogle Scholar
  17. 17.
    Wise SA, Schantz MM, Koster BJ, Demiralp R, Mackey EA, Greenberg RR, Burow M, Ostapczuk P, Lillestolen TI (1993) Fresenius J Anal Chem 345:270–277CrossRefGoogle Scholar
  18. 18.
    Schantz MM, Koster BJ, Oakley LM, Schiller SB, Wise SA (1995) Anal Chem 67:901–910CrossRefGoogle Scholar
  19. 19.
    Donais MK, Saraswati R, Mackey E, Demiralp R, Porter B, Vangel M, Levenson M, Mandic V, Azemard S, Horvat M, May K, Emons H, Wise S (1997) Fresenius J Anal Chem 358:424–430CrossRefGoogle Scholar
  20. 20.
    Tutschku S, Schantz MM, Wise SA (2002) Anal Chem 74:4694–4701CrossRefGoogle Scholar
  21. 21.
    Poster DL, Kucklick JR, Schantz MM, Porter BJ, Leigh SD, Wise SA (2003) Anal Bioanal Chem 375:223–241Google Scholar
  22. 22.
    Poster DL, Schantz MM, Kucklick JR, de Alda MJL, Porter BJ, Pugh R, Wise SA (2004) Anal Bioanal Chem 378:1213–1231CrossRefGoogle Scholar
  23. 23.
    Rudel H, Lepper P, Steinhanses J (2003) Environ Sci Technol 37:1731–1738CrossRefGoogle Scholar
  24. 24.
    ISO (1993) Guide to the expression of uncertainty in measurementGoogle Scholar
  25. 25.
    Eurachem (2000)Google Scholar
  26. 26.
    Schmitt VO, Szpunar J, Donard OFX, Lobinski R (1997) Can J Anal Sci Spectrosc 42:41–49Google Scholar
  27. 27.
    Pereiro IR, Schmitt VO, Szpunar J, Donard OFX, Lobinski R (1996) Anal Chem 68:4135–4140CrossRefGoogle Scholar
  28. 28.
    Szpunar J, Schmitt VO, Lobinski R, Monod JL (1996) J Anal Atom Spectrom 11:193–199CrossRefGoogle Scholar
  29. 29.
    Poperechna N, Heumann KG (2005) Anal Bioanal Chem 383:153–159CrossRefGoogle Scholar
  30. 30.
    Rodriguez-Gonzalez P, Alonso JIG, Sanz-Medel A (2004) J Anal Atom Spectrom 19:767–772CrossRefGoogle Scholar
  31. 31.
    Yu LL, Fassett JD, Guthrie WF (2002) Anal Chem 74:3887–3891CrossRefGoogle Scholar
  32. 32.
    Centineo G, Rodriguez-Gonzalez P, Gonzalez EB, Alonso JIG, Sanz-Medel A (2004) J Mass Spectrom 39:485–494CrossRefGoogle Scholar
  33. 33.
    Rodríguez-González P, Ruiz Encinar J, Ignacio García Alonso J, Sanz-Medel A (2004) J Anal Atom Spectrom 19:685–691CrossRefGoogle Scholar
  34. 34.
    Levenson MS, Banks DL, Eberhardt KR, Gill LM, Guthrie WF, Liu HK, Vangel MG, Yen JH, Zhang NF (2000) J Res National Inst Stan Technol 105:571–579Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Point
    • 1
    Email author
  • W. Clay Davis
    • 1
  • Steven J. Christopher
    • 1
  • Michael B. Ellisor
    • 1
  • Rebecca S. Pugh
    • 1
  • Paul R. Becker
    • 1
  • Olivier F. X. Donard
    • 2
  • Barbara J. Porter
    • 3
  • Stephen A. Wise
    • 3
  1. 1.National Institute of Standards and Technology, Analytical Chemistry DivisionHollings Marine LaboratoryCharlestonUSA
  2. 2.Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRSPauFrance
  3. 3.Analytical Chemistry DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations