Skip to main content
Log in

Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Among the “traditional” hydride-forming elements, lead is probably the most difficult, and its determination in this form has rarely been reported in the literature. In this paper a simple and rapid method, axial-view inductively-coupled plasma optical-emission spectrometry using on-line hydride generation (HG–ICP–OES) from samples prepared as slurry, is proposed for determination of lead in environmental samples. The samples (20–50 mg, particle size ≤120 μm) were treated with 1 mL aqua regia in a 40-kHz ultrasonic bath for 60 min. The slurry was diluted to a final volume of 50 mL with a 10% m/v solution of (NH4)2S2O8. The concentrations of NaBH4, tartaric acid, and (NH4)2S2O8, used for on-line plumbane generation were optimized by means of a complete factorial analysis applied to an aqueous standard solution and to the slurry of a sediment certified reference material (CRM). External calibration against aqueous standards in the concentration range 10–100 μg L−1 was used for analysis of six CRM—three marine sediments, one river sediment, and two sewage sludges. Analysis of the filtered slurry showed that Pb was only partially extracted into the liquid phase. Several major concomitants tested did not affect the Pb signal. The detection limit (3s, n = 10) for 20 mg sample in a final volume of 50 mL was 5.0 μg g−1. Tin was the only other hydride-forming analyte that could be determined satisfactorily with Pb; for tin the detection limit was 1.0 μg g−1. The values obtained for Pb and Sn were not significantly different from the certified concentrations, according to the t-test at the 95% confidence level. Nine river sediments collected locally were also analyzed and the concentrations were in agreement with results obtained after total digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Holak W (1969) Anal Chem 41:1712–1713

    Article  PubMed  CAS  Google Scholar 

  2. Braman RS, Justen LL, Foreback CC (1972) Anal Chem 44:2195–2199

    Article  CAS  Google Scholar 

  3. Thompson KC, Thomerson DR (1974) Analyst 99:595–601

    Article  CAS  Google Scholar 

  4. Ikeda M, Nishibe J, Hamada S, Tujino R (1981) Anal Chim Acta 125:109–115

    Article  CAS  Google Scholar 

  5. Valdés-Hevia y Temprano MC, Fernández de la Campa MR, Sanz-Medel A (1993) J Anal At Spectrom 8:821–825

    Article  Google Scholar 

  6. Marrero J, Arisnabarreta SP, Smichowski P (2003) Atom Spectrosc 24:133–142

    CAS  Google Scholar 

  7. Madrid Y, Cámara C (1994) Analyst 119:1647–1658

    Article  CAS  Google Scholar 

  8. Cankur O, Korkmaz D, Ataman OY (2005) Talanta 66:789–793

    Article  CAS  Google Scholar 

  9. Valdés-Hevia y Temprano MC, Fernández BA, Fernández de la Campa MR, Sanz-Medel A (1993) Anal Chim Acta 283:175–182

    Article  Google Scholar 

  10. Valdés-Hevia y Temprano MC, Fernández de la Campa MR, Sanz-Medel A (1995) Anal Chim Acta 309:369–378

    Article  Google Scholar 

  11. Elfering H, Andersson JT, Poll KG (1998) Analyst 123:669–674

    Article  CAS  Google Scholar 

  12. Brindle ID, McLaughlin R, Tangtreamjitmun N (1998) Spectrochim Acta B 53:1121–1129

    Article  Google Scholar 

  13. Magalhães CEC, Arruda MAS (1998) Quím Nova 21:459–466

    Google Scholar 

  14. Matusiewicz H (2003) Appl Spectrosc Rev 38:263–294

    Article  CAS  Google Scholar 

  15. Vieira MA, Saint’Pierre TD, Welz B, Curtius AJ (2004) J Anal At Spectrom 19:297–300

    Article  CAS  Google Scholar 

  16. Ribeiro AS, Vieira MA, Curtius AJ (2004) Spectrochim Acta B 59:243–253

    Article  CAS  Google Scholar 

  17. Vieira MA, Ribeiro AS, Curtius AJ (2004) Anal Bioanal Chem 380:570–577

    Article  PubMed  CAS  Google Scholar 

  18. Vieira MA, Ribeiro AS, Curtius AJ (2004) J Braz Chem Soc 15:825–831

    Article  Google Scholar 

  19. Cava-Montesinos P, Cervera ML, Pastor A, de la Guardia M (2004) Talanta 62:175–184

    Article  CAS  Google Scholar 

  20. Santos EJ, Herrmann AB, Vieira MA, Frescura VLA, Curtius AJ (2005) Spectrochim Acta B 60:659–665

    Article  CAS  Google Scholar 

  21. Santos EJ, Herrmann AB, Frescura VLA, Curtius AJ (2005) J Anal At Spectrom 20:538–543

    Article  CAS  Google Scholar 

  22. Santos EJ, Herrmann AB, Frescura VLA, Curtius AJ (2005) Anal Chim Acta 548:166–173

    Article  CAS  Google Scholar 

  23. Ródenas-Torralba E, Morales-Rubio A, de la Guardia M (2005) Food Chem 91:181–189

    Article  CAS  Google Scholar 

  24. Cal-Prieto MJ, Felipe-Sotelo M, Carlosena A, Andrade JM (2005) Atom Spectrosc 26:94–101

    CAS  Google Scholar 

  25. Pohl P (2004) Trends Anal Chem 23:87–101

    Article  CAS  Google Scholar 

  26. Takase I, Pereira HB, Luna AS, Grinberg P, Campos RC (2002) Quím Nova 25:1132–1144

    Article  CAS  Google Scholar 

  27. Vieira MA, Welz B, Curtius AJ (2002) Spectrochim Acta B 57:2057–2067

    Article  Google Scholar 

  28. Ebdon L, Foulkes M, Sutton K (1997) J Anal At Spectrom 12:213–229

    Article  CAS  Google Scholar 

  29. Madrid Y, Bonilla M, Cámara C (1989) J Anal At Spectrom 4:167–169

    Article  CAS  Google Scholar 

  30. Madrid Y, Bonilla M, Cámara C (1990) Analyst 115:563–565

    Article  PubMed  CAS  Google Scholar 

  31. Madrid Y, Meseguer J, Bonilla M, Cámara C (1990) Anal Chim Acta 237:181–187

    Article  CAS  Google Scholar 

  32. Heininger P, Pelzer J, Henrion R, Henrion G (1998) Fresenius J Anal Chem 360:344–347

    Article  CAS  Google Scholar 

  33. Williamson KS, Petty JD, Huckins JN, Lebo JA, Kaiser EM (2002) Chemosphere 49:173–180

    Article  Google Scholar 

  34. Alloway BJ (ed) (1993) Heavy metals in soils. Wiley, New York

    Google Scholar 

  35. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry. Pearson Education, London

    Google Scholar 

  36. Moreda-Piñeiro J, López-Mahía P, Muniategui-Lorenzo S, Fernández-Fernández E, Prada-Rodríguez D (2002) Anal Chim Acta 461:261–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conselho Nacional de Pesquisas e Desenvolvimento Tecnológico (CNPq) and Fundo de Amparo à Pesquisa do Estado da Bahia (FAPESB) for financial support. A.J. Curtius and B. Welz have schlolarships from CNPq and FAPESB, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson José Curtius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, E.J., Herrmann, A.B., Frescura, V.L.A. et al. Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal Bioanal Chem 388, 863–868 (2007). https://doi.org/10.1007/s00216-006-1081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1081-2

Keywords