Skip to main content

Advertisement

Log in

Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The direct electron transfer between hemoglobin (Hb) and an electrode was realized by first immobilizing the protein onto SBA-15.The results of the immobilization showed that the adsorption was pH-dependent with a maximum adsorption near the isoelectric point of the protein, and SBA-15 with a larger pore diameter showed greater adsorption capacity for Hb. UV–vis spectroscopy and nitrogen adsorption analysis indicated that Hb was adsorbed within the channel of SBA-15 and no significant denaturation occurred to the protein. The Hb/SBA-15 composite obtained was used for the fabrication of a Hb biosensor to detect hydrogen peroxide. A pair of well-defined redox peaks at −0.337 and −0.370 V on the Hb/SBA-15 composite modified glassy carbon electrode was observed, and the electrode reactions showed a surface-controlled process with a single proton transfer at a scan rate range from 20 to 1,000 mV/s. The sensor showed a fast amperometric response, a low detection limit (2.3 × 10−9 M) and good stability for the detection of H2O2. The electrochemical results indicated that the immobilized Hb still retained its biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Peng S, Gao Q, Wang Q, Shi J (2004) Chem Mater 16:2675–2684

    Article  CAS  Google Scholar 

  2. Kondo A, Fukuda H (1998) J Colloid Interface Sci 198:34–41

    Article  CAS  Google Scholar 

  3. Gu HY, Yu AM, Chen HY (2001) J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  4. Ma X, Sun Z, Zheng X, Li G (2006) J Anal Chem 6:669–672

    Article  CAS  Google Scholar 

  5. Yang W, Bai Y, Li Y, Sun C (2005) Anal Bioanal Chem 382:44–50

    Article  CAS  Google Scholar 

  6. Nadzhafova OY, Zaitsev VN, Drozdova MV, Vaze A, Rusling JF (2004) Electrochem Commun 6:205–209

    Article  CAS  Google Scholar 

  7. Jia N, Wang L, Liu L, Zhou Q, Jiang Z (2005) Electrochem Commun 7:349–354

    Article  CAS  Google Scholar 

  8. Liu S, Dai Z, Chen HY, Ju H (2004) Biosens Bioelectron 19:963–969

    Article  CAS  Google Scholar 

  9. Feng J-J, Zhao G, Xu J-J, Chen H-Y (2005) Anal Biochem 342:280–286

    Article  CAS  Google Scholar 

  10. Liu H-H, Wan Y-Q, Zou G-L (2006) Anal Bioanal Chem 385:1470–1476

    Article  CAS  Google Scholar 

  11. Liu XJ, Ma X, Li GX (2005) Sens Actuators B 106:284–288

    Article  CAS  Google Scholar 

  12. Tao WY, Pan DW, Liu YJ, Nie LH, Yao SZ (2005) Anal Biochem 338:332–340

    Article  CAS  Google Scholar 

  13. Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  14. Díaz JF, Balkus KJ (1996) J Mol Catal B 2:115–126

    Article  Google Scholar 

  15. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Micro Meso Mater 44–45:755–762

    Article  Google Scholar 

  16. Deere J, Magner E, Wall JG, Hodnett BK (2002) J Phys Chem B 106:7340–7347

    Article  CAS  Google Scholar 

  17. Jenny MK, Antje D, Geoffrey WS, Andrea JO (2001) Micro Meso Mater 44–45:769–774

    Google Scholar 

  18. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  19. Zhao D, Huo Q, Feng J, Bradley FC, Galen DS (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  20. Humphrey HPY, Wright PA, Botting NP (2001) Micro Meso Mater 44–45:763–768

    Google Scholar 

  21. Lei J, Fan J, Yu C, Zhang L, Jiang S, Tu B, Zhao D (2004) Micro Meso Mater 73:121–128

    Article  CAS  Google Scholar 

  22. Hudson S, Magner E, Cooney J, Hodnett BK (2005) J Phys Chem B 109:19496–19506

    Article  CAS  Google Scholar 

  23. Chong ASM, Zhao XS (2004) Appl Surf Sci 237:398–404

    CAS  Google Scholar 

  24. Vinu A, Murugesan V, Hartmann M (2004) J Phys Chem B 108:7323–330

    Article  CAS  Google Scholar 

  25. Zhou LH, Xian YZ, Zhou YY, Hu J, Liu HL (2005) Acta Chim Sin 63:2117–2120

    CAS  Google Scholar 

  26. Tischer W, Kasche V (1999) Trends Biotechnol 17:326–335

    Article  CAS  Google Scholar 

  27. Dai Z, Liu S, Ju H, Chen H (2004) Biosens Bioelectron 19:861–867

    Article  CAS  Google Scholar 

  28. Dai Z, Xu X, Ju H (2004) Anal Biochem 332:23–31

    Article  CAS  Google Scholar 

  29. Dai Z, Ju H, Chen H (2005) Electroanalysis 17:862–868

    Article  CAS  Google Scholar 

  30. Wang QL, Lu GX, Yang BJ (2004) Biosens Bioelectron 19:1269–1275

    Article  CAS  Google Scholar 

  31. Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465–11471

    Article  CAS  Google Scholar 

  32. Hoang VT, Huang Q, Eić M, Do TO, Kaliaguine S (2005) Langmuir 21:2051–2057

    Article  CAS  Google Scholar 

  33. Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Chem Mater 12:1961–1968

    Article  CAS  Google Scholar 

  34. Theorell H, Ehrenberg A (1951) Acta Chem Scand 5:823–848

    Article  CAS  Google Scholar 

  35. Nassa A-EF, Willis WS, Rusling JF (1995) Anal Chem 67:2386–2392

    Article  Google Scholar 

  36. Nassar AE, Zhang Z, Hu N, Rusling JF, Kumosinski TF (1997) J Phys Chem B 101:2224–2231

    Article  CAS  Google Scholar 

  37. Huang H, He P, Hu N, Zeng Y (2003) Bioelectrochemistry 61:29–38

    Article  CAS  Google Scholar 

  38. Trushina E, Oda R, Landers J, Mcmurray C (1997) Electrophoresis 18:1890–1898

    Article  CAS  Google Scholar 

  39. Ricci F, Amine A, Palleschi G, Moscone D (2003) Biosens Bioelectron 18:165–174

    Article  CAS  Google Scholar 

  40. Karyakin AA, Karyakina EE, Gorton L (2000) Anal Chem 72:1720–1723

    Article  CAS  Google Scholar 

  41. Feng J-J, Xu J-J, Chen H-Y (2006) Electrochem Commun 8:77–82

    Article  CAS  Google Scholar 

  42. Yu J, Ju H (2003) Anal Chim Acta 486:209–216

    Article  CAS  Google Scholar 

  43. Kamin RA, Wilson GS (1980) Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  44. Fan C, Wang H, Sun S, Zhu D, Wagner G, Li G (2001) Anal Chem 73:2850–2854

    Article  CAS  Google Scholar 

  45. Zhao YD, Bi YH, Zhang WD, Luo QM (2005) Talanta 65:489–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 20635020, 20575026 and 90606016), the National Basic Research Program of China (grant no. 2003CB615804), Jiangsu National Natural Science Foundation (BK2006114) and the Modern Analysis Center of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Jie Zhu or Wenhua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Xu, Q., Feng, X. et al. Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2 . Anal Bioanal Chem 387, 1553–1559 (2007). https://doi.org/10.1007/s00216-006-1064-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1064-3

Keywords