Skip to main content

Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy

Abstract

A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography–triple-quadrupole (tandem) mass spectrometry (LC–MS–MS). By extraction of 1-L water samples and concentration of the extract to 100 μL, method detection limits (MDLs) as low as 0.05–0.1 ng L−1 were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L−1), the herbicides terbutylazine (7 ng L−1), atrazine (5 ng L−1), simazine (16 ng L−1), diuron (11 ng L−1), and atrazine-desethyl (11 ng L−1), the pharmaceuticals carbamazepine (9 ng L−1), sulfamethoxazole (10 ng L−1), gemfibrozil (1.7 ng L−1), and benzafibrate (1.2 ng L−1), the surfactant metabolite nonylphenol (15 ng L−1), its carboxylates (NPE1C 120 ng L−1, NPE2C 7 ng L−1, NPE3C 15 ng L−1) and ethoxylates (NPE n Os, n = 3-17; 300 ng L−1), perfluorinated surfactants (PFOS 9 ng L−1, PFOA 3 ng L−1), and estrone (0.4 ng L−1). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local waterworks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Heberer T, Stan H-J (1996) Vom Wasser 86:19–31

    CAS  Google Scholar 

  2. 2.

    Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2004) J Chromatogr A 1045:85–92

    Article  CAS  Google Scholar 

  3. 3.

    Petrovic M, Diaz A, Ventura F, Barceló D (2003) Environ Sci Technol 37:4442–4448

    Article  CAS  Google Scholar 

  4. 4.

    Loraine GA, Pettigrove ME (2006) Environ Sci Technol 40:687–695

    Article  CAS  Google Scholar 

  5. 5.

    Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Sci Total Environ 329:99–113

    Article  CAS  Google Scholar 

  6. 6.

    Petrovic M, Gonzalez S, Barceló D (2003) Trends Anal Chem 22:685–696

    Article  CAS  Google Scholar 

  7. 7.

    Psillakis E, Kalogerakis N (2003) J Chromatogr A 999:145–153

    Article  CAS  Google Scholar 

  8. 8.

    Luks-Betlej K, Popp P, Janoszka B, Paschke H (2001) J Chromatogr A 938:93–101

    Article  CAS  Google Scholar 

  9. 9.

    Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210

    Article  CAS  Google Scholar 

  10. 10.

    Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Environ Sci Technol 36:3855–3863

    Article  CAS  Google Scholar 

  11. 11.

    Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D (2006) Environ Sci Technol 40:2442–2447

    Article  CAS  Google Scholar 

  12. 12.

    European Commission (1980) Off J Eur Commun, No. 80/778, L229/1130, 23 Aug. 1980

  13. 13.

    European Commission (2000) Off J Eur Commun, L 327, 22 Dec. 2000

  14. 14.

    European Commission (2006) internet, URL: http://ec.europa.eu/environment/water/water-dangersub/surface_water.htm

  15. 15.

    Binelli A, Provini A (2003) Chemosphere 52:717–723

    Article  CAS  Google Scholar 

  16. 16.

    Binelli A, Bacchetta R, Mantecca P, Ricciardi F, Provini A, Vailati G (2004) Aquat Toxicol 69:175–188

    Article  CAS  Google Scholar 

  17. 17.

    Bettinetti R, Croce V, Galassi S, Volta P (2006) Environ Sci Pollut Res Int 13:59–66

    Article  CAS  Google Scholar 

  18. 18.

    European Commission (2001) Off J Eur Commun, L 331, 15 Dec. 2001

  19. 19.

    Rodriguez-Mozaz S, Lopez da Alda MJ, Barceló D (2004) Anal Chem 76:6998–7006

    Article  CAS  Google Scholar 

  20. 20.

    Cohen A, Klint K, Bowadt S, Persson P, Joensson JA (2001) J Chromatogr A 927:103–110

    Article  CAS  Google Scholar 

  21. 21.

    Takino M, Daishima S, Yamaguchi K (2000) J Chromatogr A 904:65–72

    Article  CAS  Google Scholar 

  22. 22.

    Batt AL, Bruce IB, Aga DS (2006) Environ Pollut 142:295–302

    Article  CAS  Google Scholar 

  23. 23.

    Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) J Chromatogr A 1092:206–215

    Article  CAS  Google Scholar 

  24. 24.

    Yang S, Cha J, Carlson K (2005) J Chromatogr A 1097:40–53

    Article  CAS  Google Scholar 

  25. 25.

    Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T (2004) Environ Sci Technol 38:5522–5528

    Article  CAS  Google Scholar 

  26. 26.

    Xie Z, Selzer J, Ebinghaus R, Caba A, Ruck W (2006) Anal Chim Acta 565:198–207

    Article  CAS  Google Scholar 

  27. 27.

    Benijts T, Dams R, Lambert W, De Leenheer A (2004) J Chromatogr A 1029:153–159

    Article  CAS  Google Scholar 

  28. 28.

    Tixier C, Singer HP, Oellers S, Müller SR (2003) Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  29. 29.

    Perez-Estrada LA, Malato S, Gernjak W, Aguera A, Thurman EM, Ferrer I, Fernandez-Alba AR (2005) Environ Sci Technol 39:8300–8306

    Article  CAS  Google Scholar 

  30. 30.

    Sabaliunas D, Webb S, Hauk A, Jacob M, Eckhoff WS (2003) Water Res 37:3145–3154

    Article  CAS  Google Scholar 

  31. 31.

    Bossi R, Vejrup KV, Mogensen BB, Asman WAH (2002) J Chromatogr A 957:27–36

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Gunther Umlauf for his helpful comments on the manuscript. Three anonymous reviewers are thanked for their revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Loos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loos, R., Wollgast, J., Huber, T. et al. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem 387, 1469–1478 (2007). https://doi.org/10.1007/s00216-006-1036-7

Download citation

Keywords

  • Polar herbicides
  • Pharmaceuticals
  • Perfluorooctanesulfonate (PFOS)
  • Nonylphenol
  • Drinking water
  • Solid-phase extraction
  • Liquid chromatography–tandem mass spectrometry (LC–MS–MS)