Skip to main content
Log in

Quantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports an approach for quantification of Lactobacillus in fermented milk, grown in a selective medium (MRS agar), by use of digital colour images of Petri plates easily obtained by use of a flatbed scanner. A one-dimensional data vector was formed to characterize each digital image on the basis of the frequency-distribution curves of the red (R), green (G), and blue (B) colour values, and quantities derived from them, for example lightness (L), relative red (RR), relative green (RG), and relative blue (RB). The frequency distributions of hue, saturation, and intensity (HSI) were also calculated and included in the data vector used to describe each image. Multivariate non-linear modelling using the least-squares support vector machine (LS-SVM) and a linear model based on PLS regression were developed to relate the microbiological count and the frequency vector. Feasibly models were developed using the LS-SVM and errors were below than 10% for Lactobacillus quantification, indicating the proposed approach can be used for automatic counting of colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fox A (2002) J Microbiol Methods 48:95–100

    Article  Google Scholar 

  2. Fox A (2000) J Chromatogr A 843:287–300

    Article  Google Scholar 

  3. Fenselau C (1994) Mass spectrometry for the characterization of microorganisms. American Chemical Society, Washington, DC

    Google Scholar 

  4. Malakar PK, Brocklehurst TF, Mackie AR, Wilson PDG, Zwietering MH, Van’t Riet K (2000) Int J Food Microbiology 56:71–80

    Article  CAS  Google Scholar 

  5. Nelson WH (1991) Modern Techniques for Rapid Microbiological Analysis. VCH, New York

    Google Scholar 

  6. Whittaker P, Mossoba MM, Al-khaldi S, Fry FS, Dunkel VC, Tall BD, Yurawecz MP (2003) J Microbiol Methods 55:709–716

    Article  PubMed  CAS  Google Scholar 

  7. Yang H, Irudayaraj J (2003) J Mol Structure 646:35–43

    Article  CAS  Google Scholar 

  8. Moller S, Kristensen CS, Poulsen LK, Cartensen JM, Moli S (1995) Appl Environ Microbiol 61:741–748

    PubMed  Google Scholar 

  9. Grattepanche F, Lacroix C, Audet P, Lapointe G (2005) Appl Microbial Biotechnol 38:181–189

    Google Scholar 

  10. Geladi P, Grahn H (1996) Multivariate image analysis, 1st edn. Wiley, New York

    Google Scholar 

  11. Colarusso P, Kidder LH, Levin IW, Fraser JC, Arens JF, Lewis EN (1998) Appl Spectrosc 52(3):106A–120A

    Article  ADS  CAS  Google Scholar 

  12. Lewis EN, Carroll JE, Clarke F (2001) NIR News 12(3):16–18

    Google Scholar 

  13. Schweitzer RC, Bangalore AS, Treado PJ (2000) Manag Modern Lab 5(1):7–13

    CAS  Google Scholar 

  14. Lavine B, Workman JJ Jr (2004) Anal Chem 76:3365–3372

    Article  PubMed  CAS  Google Scholar 

  15. Huang J, Esbensen KH (2001) Chemometr Intell Lab Syst 57(1):37–56

    Article  CAS  Google Scholar 

  16. Ginesu G, Giusto GG, Margner V, Meinlschmidt P (2004) IEEE Trans Ind Electron 51(2):480–490

    Article  Google Scholar 

  17. Gabrielson J, Hart M, Jarelov A, Kuhn I, McKenzie D, Mollby R (2002) J Microbiol Methods 50:63–73

    Article  PubMed  CAS  Google Scholar 

  18. Lied TT, Esbensen KH (2001) Chemometr. Intell Lab Syst 58(2):213–226

    Article  CAS  Google Scholar 

  19. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using Matlab Pearson. Prentice Hall, London

    Google Scholar 

  20. Antonelli A, Cocchi M, Fava P, Foca G, Franchini GC, Manzini D, Ulrici A (2004) Anal Chim Acta 515:3–13

    Article  CAS  Google Scholar 

  21. Miambi E, Guyot JP, Ampe F (2003) Int J Food Microbiol 82:111–120

    Article  PubMed  Google Scholar 

  22. Rogelj I (2000) Agric Sci Prof Rev 6(1):105–107

    Google Scholar 

  23. Miller GD, Jarvis JK, McBean LD (2000) Handbook of dairy foods and nutrition, 2nd edn. National Dairy Council, New York

    Google Scholar 

  24. Dart RK (1996) Microbiology for the analytical chemist. The Royal Society Chemistry, Cambridge

    Google Scholar 

  25. Suykens JAK (2001) Eur J Control 7:311–327

    Google Scholar 

  26. Zomer S, Brereton RG, Carter JF, Eckers C (2004) Analyst 129:175–181

    Article  CAS  Google Scholar 

  27. Brudzewski K, Osowski S, Markiewicz T (2004) Sens Actuators B 98:291–298

    Article  Google Scholar 

  28. Belousov AI, Verzakov SA ,von Frese J (2002) J Chemom 16:482–489

    Article  CAS  Google Scholar 

  29. Martin TC, Moecks J, Belooussov A, Cawthraw S, Dolenko B, Eiden M, von Frese J, Köhler W, Schmitt J, Somorjai R, Udelhoven T, Verzakov S, Petrich W (2004) Analyst 129:897–901

    Article  PubMed  CAS  Google Scholar 

  30. Pierna JAF, Volery P, Besson R, Baeten V, Dardenne P (2005) J Agric Food Chem 53(17):6581–6585

    Article  Google Scholar 

  31. Suykens JAK, van Gestel T, de Brabanter J, de Moor B, Vandewalle J, (2002) Least-Squares Support Vector Machines. World Scientific, Singapore

    MATH  Google Scholar 

  32. Thissen U, Pepers M, Ustun B, Melssen WJ, Buydens LMC (2004) Chemometr. Intell Lab Syst 73:169–179

    Article  CAS  Google Scholar 

  33. Chauchard F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V (2004) Chemometr Intell Lab Syst 71(2):141–150

    Article  CAS  Google Scholar 

  34. Cogdill RP, Dardenne P (2004) J Near Infrared Spectrosc 12(2):93–100

    CAS  Google Scholar 

  35. Arfken GB, Weber HJ (1995) Mathematical methods for physicists, 4th edn. Academic Press, New York

    Google Scholar 

  36. Madigan MT, Martenko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, New Jersey

    Google Scholar 

  37. Wise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS (2005) PLS Toolbox 3.5 for use with MATLAB. Eigenvector Research, Manson, WA

  38. Pelckmans K, Suykens JAK, Van Gestel T, de Brabanter J, Lukas L, Hamers B, de Moor B, Vandewalle J (2003) LS-SVMlab Toolbox User’s Guide version 1.5. Department of Electrical Engineering, Katholieke Universiteit Leuven

Download references

Acknowledgements

The authors wish to thank the CNPq, FAPEMIG and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronei J. Poppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borin, A., Ferrão, M.F., Mello, C. et al. Quantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines. Anal Bioanal Chem 387, 1105–1112 (2007). https://doi.org/10.1007/s00216-006-0971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0971-7

Keywords

Navigation