Skip to main content
Log in

Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pharmaceuticals have become major targets in environmental chemistry due to their presence in aquatic environments (following incomplete removal in wastewater treatment or point-source contaminations), threat to drinking water sources and concern about their possible effects to wildlife and humans. Recently several methods have been developed for the determination of drugs and their metabolites in the lower nanogram per litre range, most of them using solid-phase extraction (SPE) or solid-phase microextraction (SPME), derivatisation and finally gas chromatography mass spectrometry (GC-MS), gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS). Due to the elevated polarity of non-steroidal anti-inflamatory drugs (NSAIDs), analytical techniques based on either liquid chromatography coupled to mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS) after a previous derivatisation step are essential. The most advanced aspects of current GC-MS, GC-MS/MS and LC-MS/MS methodologies for NSAID analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Lancet 355:1789–1790

    Article  CAS  Google Scholar 

  2. Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Sci Technol 37:1241–1248

    Article  CAS  Google Scholar 

  3. Heberer T (2002) Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  4. Clara M, Stren B, Kreuzinger N (2004) Water Res 38:947–954

    Article  CAS  Google Scholar 

  5. Pedersen JA, Soliman M, Stuffet IH (2005) J Agric Food Chem 53:1625–1632

    Article  CAS  Google Scholar 

  6. O’Brien E, Dietrich DR (2004) Trends Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  7. Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  8. Petrovic M, Gonzalez S, Barceló D (2003) Trends Anal Chem 22:685

    Article  CAS  Google Scholar 

  9. Ternes TA (2002) Environ Sci Technol 36:3855

    Article  CAS  Google Scholar 

  10. Reddersen K, Haberer T, Dünnbier U (2002) Chemosphere 49:539

    Article  CAS  Google Scholar 

  11. Tyler CR, Jobling S, Sumpter JP (1998) Crit Rev Toxicol 28:319

    Article  CAS  Google Scholar 

  12. Ternes TA (2001) Trends Anal Chem 20:419

    Article  CAS  Google Scholar 

  13. Richardson SD (2004) Anal Chem 76:3337–3364

    Article  CAS  Google Scholar 

  14. Thurman EM, Ferrer I (2003) In: Ferrer I, Thurman EM (eds) Liquid chromatography/mass spectrometry MS/MS and time of flight MS: analysis of emerging contaminants. ACS Symposium Series 850, American Chemical Society, Washington DC, pp 14–31

    Google Scholar 

  15. Gros M, Petrović M, Barceló D (2006) Anal Bioanal Chem 386:941–952

    Google Scholar 

  16. Debska J, Kot-Wasik A, Namiesnik J. Crit. Rev. Anal. Chem. 2004, 34, 51–67

    Google Scholar 

  17. Petrovic M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14

    Article  CAS  Google Scholar 

  18. Gómez MJ, Petrovic M, Fernández-Alba A, Barceló D (2006) J Chromatogr A 1114:224–233

    Article  Google Scholar 

  19. Quintana JB, Reemtsma T (2004) Rapid Commun Mass Spectrom 18:765

    Article  CAS  Google Scholar 

  20. Weigel S, Kallenborn R, Hühnerfuss H (2004) J Chromatogr A 1023:183–195

    Article  CAS  Google Scholar 

  21. Farré M, Ferrer I, Ginebreda A, Figueras M, Olivella L, Tirapu Ll, Vilanova M, Barceló D (2001) J Chromatogr A 938:187–197

    Article  Google Scholar 

  22. Huppert N, Würtele M, Hahn HH (1998) J Anal Chem 362:529–536

    Article  CAS  Google Scholar 

  23. Rodríguez I, Carpinteiro J, Quintana JB, Carro AM, Lorenzo RA, Cela R (2004) J Chromatogr A 1024:1–8

    Article  Google Scholar 

  24. Quintana JB, Miró M, Estela JM, Cerdá V (2006) Anal Chem 78:2832–2840

    Article  CAS  Google Scholar 

  25. Hamscher G, Sczesny S, Höper H, Nau H (2002) Anal Chem 74:1509

    Article  CAS  Google Scholar 

  26. Sczesny S, Nau H, Hamscher G (2003) J Agric Food Chem 51:697

    Article  CAS  Google Scholar 

  27. Heberer TJ (2002) Hydrol 266:175–189

    Article  CAS  Google Scholar 

  28. Hilton MJ, Thomas KVJ (2003) J Chromatogr A 1015:129–141

    Article  CAS  Google Scholar 

  29. Buser HR, Poiger T, Müller MD (1998) Environ Sci Technol 32:3449

    Article  CAS  Google Scholar 

  30. Öllers S, Singer HP, Fassler P, Müller SR (2001) J Chromatogr A 911:225

    Article  Google Scholar 

  31. Tixier C, Singer HP, Oellers S, Müller SR (2003) Environ Sci Technol 37:1061

    Article  CAS  Google Scholar 

  32. Buser HR, Poiger T, Müller MD (1999) Environ Sci Technol 33:2529

    Article  CAS  Google Scholar 

  33. Koutsouba V, Heberer T, Fuhrmann B, Schmidt-Baumler K, Tsipi D, Hiskia A (2003) Chemosphere 51:69–75

    Article  CAS  Google Scholar 

  34. Zapf A, Stan HJ (1999) J High Resolut Chromatogr 22:83–88

    Article  CAS  Google Scholar 

  35. Jux U, Baginski MB, Arnold H-G, Krönke M, Seng PN (2002) Int J Hyg Environ Health 205:393–398

    Article  CAS  Google Scholar 

  36. Weigel S, Kuhlmann J, Hühnerfuss H (2002) Sci Tot Eviron 295:131

    Article  CAS  Google Scholar 

  37. Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) J Hazard Mat 122:195–2004

    Article  CAS  Google Scholar 

  38. Lin WC, Chen HC, Ding WH (2005) J Chromatogr A 1065:279–285

    Article  CAS  Google Scholar 

  39. Kosjek T, Heath E, Krbavčič A (2005) Environ Int 31:679–685

    Article  CAS  Google Scholar 

  40. Rodríguez Pereiro I, González Irimia R, Rubí Cano E, Cela Torrijos R (2004) Anal Chim Acta 524:249–256

    Article  Google Scholar 

  41. Woo KL, Kim JI (1999) J Chromatogr A 862:199

    Article  CAS  Google Scholar 

  42. Rodrígez I, Quintana JB, Carpinteiro J, Carro AM, Lorenzo RA, Cela R (2003) J Chromatogr A 985:265–274

    Article  Google Scholar 

  43. Lee HB, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129

    Article  CAS  Google Scholar 

  44. Reemtsma T (2003) J Chromatogr A 1000:477

    Article  CAS  Google Scholar 

  45. Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378:862

    Article  CAS  Google Scholar 

  46. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) J Am Soc Mass Spectrom 11:942

    Article  CAS  Google Scholar 

  47. Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UATH (2004) Anal Bioanal Chem 378:955

    Article  CAS  Google Scholar 

  48. Marchese S, Perret D, Gentilli A, Curini R, Pastori F (2003) Chromatographia 58:263–269

    CAS  Google Scholar 

  49. Hernando MD, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem (available on-line)

  50. Ferrer I, Thurman EM (2005) Anal Chem 77:3394–3400

    Article  CAS  Google Scholar 

  51. Marchese S, Gentilli A, Perret D, D’Ascenzo G, Pastori F (2003) Rapid Commun Mass Spectrom 17:879

    Article  CAS  Google Scholar 

  52. Petrovic M, Gros M, Barceló D (2006) J Chromatogr A 1124:68–81

    Google Scholar 

  53. Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 1:34

    Google Scholar 

  54. Vanderford BJ, Person RA, Rexing DJ, Zinder SA (2003) Anal Chem 75:6265

    Article  CAS  Google Scholar 

  55. Löffler D, Ternes TA (2003) J Chromatogr A 1021:133

    Article  Google Scholar 

  56. Santos JL, Aparicio I, Callejón M (2005) Anal Chim Acta 550:116–122

    Article  CAS  Google Scholar 

  57. Dsikowitzky L, Schwarzbauer J, Kronimus A, Littke R (2004) Chemosphere 57:1275–1288

    Article  CAS  Google Scholar 

  58. Ahrer W, Scherwenk E, Buchberger W (2001) J Chromatogr A 910:183–195

    Article  Google Scholar 

  59. Ternes TA (1998) Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  60. Kloepfer A, Quintana JB, Reemtsma T (2005) J Chromatogr A 1067:153–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU through the project NORMAN (Contract No. 018486). Marinella Farré thanks the support from the MINISTERIO DE EDUCACIÓN y CIENCIA through the Juan de la Cierva program. This article reflects only the authors’ views and the EU is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farré, M., Petrovic, M. & Barceló, D. Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples. Anal Bioanal Chem 387, 1203–1214 (2007). https://doi.org/10.1007/s00216-006-0936-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0936-x

Keywords

Navigation