Abstract
A new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored. The most statistically efficient techniques known from single-molecule spectroscopy are used to estimate fluorescence parameters of interest for all pixels, not just for the regions of interest. Their statistical significance is judged from a stack of two-dimensional histograms. In this way, specific pixels can be selected for subsequent pixel-based subensemble analysis in order to improve the statistical accuracy of the parameters estimated. MFDi avoids the need for sequential measurements, because the registered data allow one to perform many analysis techniques, such as fluorescence-intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS), in an off-line mode. The limitations of FCS for counting molecules and monitoring dynamics are discussed. To demonstrate the ability of our technique, we analysed two systems: (i) interactions of the fluorescent dye Rhodamine 110 inside and outside of a glutathione sepharose bead, and (ii) microtubule dynamics in live yeast cells of Schizosaccharomyces pombe using a fusion protein of Green Fluorescent Protein (GFP) with Minichromosome Altered Loss Protein 3 (Mal3), which is involved in the dynamic cycle of polymerising and depolymerising microtubules.
Similar content being viewed by others
References
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Science 312:217–224
Xie XS, Yu J, Yang WY (2006) Science 312:228–230
Wouters FS, Verveer PJ, Bastiaens PIH (2001) Trends Cell Biol 11:203–211
Truong K, Ikura M (2001) Curr Opin Struct Biol 11:573–578
Sekar RB, Periasamy A (2003) J Cell Biol 160:629–633
Meyer BH, Segura JM, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) Proc Natl Acad Sci USA 103:2138–2143
Hoppe A, Christensen K, Swanson JA (2002) Biophys J 83:3652–3664
Bastiaens PIH, Squire A (1999) Trends Cell Biol 9:48–52
Jares-Erijman EA, Jovin TM (2003) Nature Biotechnol 21:1387–1395
Clayton AH, Hanley QS, Arndt-Jovin DJ, Subramaniam V, Jovin TM (2002) Biophys J 83:1631–1649
Levi V, Ruan Q, Kis-Petikova K, Gratton E (2003) Biochem Soc Trans 31:997–1000
Seisenberger G, Ried MU, Endreß T, Büning H, Hallek M, Bräuchle C (2001) Science 294:1929–1932
Schütz GJ, Axmann M, Freudenthaler S, Schindler H, Kandror K, Roder JC, Jeromin A (2004) Microsc Res Tech 63:159–167
Kues T, Dickmanns A, Lührmann R, Peters R, Kubitscheck U (2001) Proc Natl Acad Sci USA 98:12021–12026
Thompson NL, Lieto AM, Allen NW (2002) Curr Opin Struct Biol 12:634–641
Bacia K, Schwille P (2003) Methods 29:74–85
Saffarian S, Elson EL (2003) Biophys J 84:2030–2042
Kohl T, Schwille P (2005) Adv Biochem Eng Biotechnol 95:107–142
Brock R, Hink MA, Jovin TM (1998) Biophys J 75:2547–2557
Schwille P, Haupts U, Maiti S, Webb WW (1999) Biophys J 77:2251–2265
Gennerich A, Schild D (2000) Biophys J 79:3294–3306
Skinner JP, Chen Y, Müller JD (2005) Biophys J 89:1288–1301
Xiao Y, Buschmann V, Weston KD (2005) Anal Chem 77:36–46
Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Biophys J 87:1260–1267
Balaji J, Maiti S (2005) Microsc Res Tech 66:198–202
Rocheleau JV, Wiseman PW, Petersen NO (2003) Biophys J 84:4011–4022
Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E (2005) Biophys J 88:L33–L36
Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Biophys J 89:1317–1327
Hebert B, Costantino S, Wiseman PW (2005) Biophys J 88:3601–3614
Kolin DL, Costantino S, Wiseman PW (2006) Biophys J 90:628–639
Palo K, Brand L, Eggeling C, Jäger S, Kask P, Gall K (2002) Biophys J 83:605–618
Kask P, Palo K, Fay N, Brand L, Mets Ü, Ullmann D, Jungmann J, Pschorr J, Gall K (2000) Biophys J 78:1703–1713
Kask P, Palo K, Ullmann D, Gall K (1999) Proc Natl Acad Sci USA 96:13756–13761
Palo K, Mets Ü, Jäger S, Kask P, Gall K (2000) Biophys J 79:2858–2866
Fries JR, Brand L, Eggeling C, Köllner M, Seidel CAM (1998) J Phys Chem A 102:6601–6613
Becker W, Bergmann A, Haustein E, Petrasek Z, Schwille P, Biskup C, Kelbauskas L, Benndorf K, Klöcker N, Anhut T, Riemann I, König K (2006) Microsc Res Tech 69:186–195
Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CAM (2006) Anal Chem 78:2039–2050
Edman L, Mets Ü, Rigler R (1996) Proc Natl Acad Sci USA 93:6710–6715
Maus M, Cotlet M, Hofkens J, Gensch T, De Schryver FC, Schaffer J, Seidel CAM (2001) Anal Chem 73:2078–2086
Bowen BP, Scruggs A, Enderlein J, Sauer M, Woodbury N (2004) J Phys Chem A 108:4799–4804
Enderlein J, Sauer M (2001) J Phys Chem A 105:48–53
Tellinghuisen J, Goodwin PM, Ambrose WP, Martin JC, Keller RA (1994) Anal Chem 66:64–72
Enderlein J, Goodwin PM, van Orden A, Ambrose WP, Erdmann R, Keller RA (1997) Chem Phys Lett 270:464–470
Schaffer J, Volkmer A, Eggeling C, Subramaniam V, Striker G, Seidel CAM (1999) J Phys Chem A 103:331–336
Antonik M, Felekyan S, Gaiduk A, Seidel CAM (2006) J Phys Chem B 110:6970–6978
Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CAM (2001) J Biotechnol 86:163–180
Rothwell PJ, Berger S, Kensch O, Felekyan S, Antonik M, Wöhrl BM, Restle T, Goody RS, Seidel CAM (2003) Proc Natl Acad Sci USA 100:1655–1660
Gaiduk A, Kühnemuth R, Antonik M, Seidel CAM (2005) ChemPhysChem 6:976–983
Zander C, Sauer M, Drexhage KH, Ko DS, Schulz A, Wolfrum J, Brand L, Eggeling C, Seidel CAM (1996) Appl Phys B 63:517–523
Eggeling C, Schaffer J, Seidel CAM, Korte J, Brehm G, Schneider S, Schrof W (2001) J Phys Chem A 105:3673–3679
Kühnemuth R, Seidel CAM (2001) Single Mol 2:251–254
Browning H, Hackney DD, Nurse P (2003) Nat Cell Biol 5:812–818
Koshioka M, Saski K, Masuhara H (1995) Appl Spectrosc 49:224–228
Felekyan S, Kühnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel CAM (2005) Rev Sci Instrum 76:083104
Busch KE, Brunner D (2004) Curr Biol 14:548–559
Kerres A, Vietmeier-Decker C, Ortiz J, Karig I, Beuter C, Hegemann J, Lechner J, Fleig U (2004) Mol Biol Cell 15:5255–5267
Striker G, Subramaniam V, Seidel CAM, Volkmer A (1999) J Phys Chem B 103:8612–8617
Acknowledgements
We thank Ursula Fleig and Christoph Beuter for their generous support. They provided the cells and prepared these cell samples for imaging. We thank Stanislav Kalinin for helping us to find appropriate and statistically stable parameters to describe noisy FCS curves. We thank Stefan Marawske for helping us to perform live cell measurements. We thank Alexander Gaiduk for helping us to establish MFD imaging. CS gratefully acknowledges financial support from the BMBF Biofuture grant 0311865 and the SFB 590, Heinrich-Heine-University Düsseldorf.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Kudryavtsev, V., Felekyan, S., Woźniak, A.K. et al. Monitoring dynamic systems with multiparameter fluorescence imaging. Anal Bioanal Chem 387, 71–82 (2007). https://doi.org/10.1007/s00216-006-0917-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-006-0917-0