Skip to main content

Advertisement

Log in

Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

P. aeruginosa living in biofilm populations sends out diffusive signalling molecules, called autoinducers, for example acylated homoserine lactone (AHL) or the P. aeruginosa quinolone signal (PQS). So far, two quorum-sensing systems, LasR and VsmR, have been identified in P. aeruginosa, both of which are required for all virulence determinants. The expression of specific genes involved in quorum-sensing regulatory mechanisms has been analysed with molecular biology methods. Real-time quantitative PCR is a highly sensitive and powerful technique for quantification of nucleic acids. Expression of the genes vsmR, lasI, and PA4296 was studied by use of reverse transcriptase and subsequent quantitative real-time PCR of the cDNAs. In parallel, expression of ribosomal 16S rRNA, used as a housekeeping gene that was constitutively expressed in all analyses, was also monitored. Biofilm was compared with planktonic bacteria, and in contrast to vsmR and Pa4296, the lasI gene was found to be down-regulated in biofilm. Extended experiments were run with synthetic signal molecules inducing regulated processes in bacterial populations. It was shown that the genes under investigation were up-regulated in mature biofilm in the presence of the signal molecule N-(3-oxododecanoyl)-l-homoserine lactone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Freemann W, Walker S, Vrana K (1999) BioTechnique 26:112–125

    Google Scholar 

  2. Muller P, Janovjak H, Miserez A, Dobbie Z (2002) BioTechnique 32:155–161

    Google Scholar 

  3. Pfaffl M (2001) Nucleic Acids Res 29:129–136

    Article  Google Scholar 

  4. Thellin O, Zorzi W, Lakaye B, DeBorman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) J Biotechnol 75:291–295

    Article  CAS  Google Scholar 

  5. Hentzer M, Eberl L, Givskov M (2005) Biofilms 2:37–61

    Article  Google Scholar 

  6. Hentzer M, Eberl L, Givskov M (eds) (2003) Microbial biofilms. ASM Press, Washington, DC

    Google Scholar 

  7. Stover C, Pham X, Erwin A, Mizoguchi S, Warrener P, Hickey M, Brinkman F, Hufnagle W, Kowalik D, Lagrou M, Garber R, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody L, Coulter S, Folger K, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong G, Wu Z, Paulsen I, Reizer J, Saier M, Hancock R, Lory S, Olson M (2000) Nature 406:959–964

    Article  CAS  Google Scholar 

  8. Diggle S, Winzer K, Latdunski A, Williams P, Cámara M (2002) J Bacteriol 184:2576–2586

    Article  CAS  Google Scholar 

  9. Chhabra S, Harty C, Hooi D, Daykin M, Williams P, Telford G, Pritchard D, Bycroft W (2003) J Med Chem 46:97–104

    Article  CAS  Google Scholar 

  10. Sauer K, Camper A, Ehrlich G, Costerton J, Davies D (2002) J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  11. Parsek M, Greenberg E (2000) Proc Natl Acad Sci USA 97:8789–8793

    Article  CAS  Google Scholar 

  12. De Kievit T, Gillis R, Marx S, Brown C, Iglewski B (2001) Appl Environ Microbiol 67:1865–1873

    Article  Google Scholar 

  13. Pesci E, Pearson J, Seed P, Iglewski B (1997) J Bacteriol 179:3127–3132

    CAS  Google Scholar 

  14. Williams P, Bainton N, Swift S, Chhabra G, Winson M, Stewart G, Salmond G, Bycroft B (1992) FEMS Microbiol Lett 100:161–168

    Article  CAS  Google Scholar 

  15. Eberhard A, Burlingame A, Kenyon G, Nealson K, Oppenheimer N (1981) Biochemistry 20:2444–2449

    Article  CAS  Google Scholar 

  16. Vandecasteele S, Peetermans W, Merckx R, Van Eldere J (2003) J Infect Dis 188:730–737

    Article  CAS  Google Scholar 

  17. Vandecasteele S, Peetermans E, Merckx R, Van Ranst M, Van Eldere J (2002) Biochem Biophys Res Commun 291:528–534

    Article  CAS  Google Scholar 

  18. Vandecasteele S, Peetermans W, Carbonez A, Van Eldere J (2004) J Bacteriol 186:2236–2239

    Article  CAS  Google Scholar 

  19. Schuster M, Lostroh C, Ogi T, Greenberg E (2003) J Bacteriol 185:2065–2079

    Article  Google Scholar 

  20. Van-Delden C, Comte R, Bally M (2001) J Bacteriol 183:5376–5384

    Article  CAS  Google Scholar 

  21. Wagner V, Bushnell D, Passador L, Brooks A, Iglewski B (2003) J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, T., Walter, S., Marten, SM. et al. Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa . Anal Bioanal Chem 387, 513–521 (2007). https://doi.org/10.1007/s00216-006-0909-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0909-0

Keywords

Navigation