Skip to main content
Log in

Detection of preclinical scrapie from serum by infrared spectroscopy and chemometrics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study we describe a methodology for diagnosing preclinical scrapie infection in hamsters from serum by a combination of Fourier-transform infrared (FT–IR) spectroscopy and chemometrics. Syrian hamsters (Mesocricetus auratus) were orally inoculated with the 263K scrapie agent, or mock-infected, and sera were obtained at 70, 100 and 130 days post infection (dpi) and at the terminal stage of scrapie (160 ± 10 dpi). The analysis of hamster sera by FT–IR spectroscopy and artificial neural networks (ANN) confirmed results from earlier studies which had indicated the existence of disease-related structural and compositional alterations in the sera of infected donors in the terminal stage of scrapie [Schmitt et al. (2002) Anal Chem 74:3865–3868]. Experimental data from sera of animals in the preclinical stages of scrapie revealed subtle but reproducible spectral variations that permitted the identification of a preclinical scrapie infection at 100 dpi and later, but not at 70 dpi. The IR spectral features that were discriminatory for the preclinical stages differed from those of the terminally ill individuals. In order to reliably identify scrapie-negative as well as preclinical (100 and 130 dpi) and terminal scrapie-positive animals, a hierarchical classification system of independent artificial neural networks (ANN) was established. A “toplevel” ANN was designed which discriminates between animals in the terminal stage of scrapie and preclinical scrapie-positive or control animals. Spectra identified by the “toplevel” ANN as preclinical or controls were then further analyzed by a second classifier, the “sublevel” ANN. Using independent external validation procedures, the toplevel classifier produced an overall classification accuracy of 98%, while the sublevel classifier yielded an accuracy of 93%, indicating that scrapie-specific serum markers were also present for preclinical disease stages. Possible spectral markers responsible for the discrimination capacity of the two different ANNs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANN:

artificial neural networks

BSE:

bovine spongiform encephalopathy

CJD:

Creutzfeldt–Jakob Disease

dpi:

days post infection

FT-IR:

Fourier-transform infrared

hpTLC:

high-performance thin-layer chromatography

i.p.:

intraperitoneally

p.o.:

orally

PrP:

prion protein

SNR:

signal-to-noise-ratio

TSE:

transmissible spongiform encephalopathy

vCJD:

variant Creutzfeldt–Jakob Disease

References

  1. Prusiner SB (1998) Proc Natl Acad Sci USA 95:13363–13583

    Article  CAS  Google Scholar 

  2. Collinge J, Whitfield J, McKintosh E, Beck J, Mead S et al (2006) Lancet 367(9528):2068–2074

    Article  Google Scholar 

  3. Hunter N, Foster J, Chong A, McCutcheon S, Parnham D et al (2002) J Gen Virol 83(11):2897–2905

    CAS  Google Scholar 

  4. Cervenakova L, Brown P (2004) Expert Rev Anti Infect Ther 2(6):873–880

    Article  CAS  Google Scholar 

  5. Parveen I, Moorby J, Allison G, Jackman R (2005) Vet Res 36(5–6):665–683

    Article  CAS  Google Scholar 

  6. Trieschmann L, Navarrete Santos A, Kaschig K, Torkler S, Maas E et al (2005) BMC Biotechnol 4(5):26

    Article  CAS  Google Scholar 

  7. Castilla J, Saa P, Soto C (2005) Nat Med 11(9):982–985

    CAS  Google Scholar 

  8. Yang WC, Yeung ES, Schmerr MJ (2005) Electrophoresis 26(9):1751–1759

    Article  CAS  Google Scholar 

  9. Safar JG, Geschwind MD, Deering C, Didorenko S, Sattavat M et al (2005) Proc Natl Acad Sci USA 102(9):3501–3506

    Article  CAS  Google Scholar 

  10. Otto M, Wiltfang J, Schütz E (1998) Br Med J 316:577–582

    CAS  Google Scholar 

  11. Maissen M, Roeckl C, Glatzel M, Goldmann W, Aguzzi A (2001) Lancet 357(9273):2026–2028

    Article  CAS  Google Scholar 

  12. Schütz E, Urnovitz HB, Iakoubov L, Schulz-Schaeffer W, Wemheuer W et al (2005) Clin Diagn Lab Immunol 12(7):814–820

    Article  CAS  Google Scholar 

  13. Lekishvili T, Sassoon J, Thompsett AR, Green A, Ironside JW, Brown DR (2004) Exp Neurol 190(1):233–244

    Article  CAS  Google Scholar 

  14. Schmitt J, Beekes M, Brauer A, Udelhoven T, Lasch P, Naumann D (2002) Anal Chem 74:3865–3868

    Article  CAS  Google Scholar 

  15. Lasch P, Schmitt J, Beekes M, Udelhoven T, Eiden M et al (2003) Anal Chem 75(23):6673–6678

    Article  CAS  Google Scholar 

  16. Martin TC, Moecks J, Belooussov A, Cawthraw S, Dolenko B et al (2004) Analyst 129(10):897–901

    Article  CAS  Google Scholar 

  17. Baldauf E, Beekes M, Diringer H (1997) J Gen Virol 78(5):1187–1197

    CAS  Google Scholar 

  18. Otto M, Beekes M, Wiltfang J, Bahn E, Poser S, Diringer H (1998) J Neurovirol 4(5):572–573

    CAS  Google Scholar 

  19. Klein TR, Kirsch D, Kaufmann R, Riesner D (1998) Biol Chem 379:655–666

    Article  CAS  Google Scholar 

  20. Gellermann GP, Appel TR, Tannert A, Radestock A, Hortschansky P (2005) Proc Natl Acad Sci USA 102(18):6297–6302

    Article  CAS  Google Scholar 

  21. Fabian H, Lasch P, Naumann D (2005) J Biomed Opt 10(3):031103

    Article  CAS  Google Scholar 

  22. Naumann D, Lasch P, Fabian H (2006) Proc SPIE 6093:1–12

    Google Scholar 

  23. Synthon (2006) Company website. Synthon GmbH, Heidelberg, Germany (see http://www.synthon-analytics.de, last accessed 7th September 2006)

  24. Riedmiller M, Braun HA (1993) ICNN-93, IEEE Intl Conf on Neural Networks, 28 March–1 April 1993, San Francisco, CA, pp 586–591

  25. Marques de Sa JP (2001) Pattern recognition: concepts, methods and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Gasser A, Kamel M (1998) J Intell Robot Syst 21:117–129

    Article  Google Scholar 

  27. Udelhoven T, Naumann D, Schmitt J (2000) Appl Spectrosc 54(10):1471–1479

    Article  CAS  Google Scholar 

  28. Schmitt J, Udelhoven T (2000) In: Gremlich HU, Yan B (eds) Infrared and Raman spectroscopy of biological materials. Marcel Dekker, New York

  29. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Biochemistry 30(31):7672–7680

    Article  CAS  Google Scholar 

  30. Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM et al (1992) Proc Natl Acad Sci USA 89(22):10940–10944

    Article  CAS  Google Scholar 

  31. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A et al (1993) Proc Natl Acad Sci USA 9d0(23):10962–10966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ramona Famulla, Stefanie Wolgast, Angelika Brauer (P25, Robert Koch-Institut) and Marion Joncic (P24, Robert Koch-Institut) for their excellent technical assistance. Furthermore we are grateful to Michael Eiden (Synthon GmbH, Heidelberg) and Elizabeth Baldauf for fruitful discussions and support. Thomas R. Appel (Fritz-Lipmann-Institut, Jena) is acknowledged for his help in performing thin-layer chromatography of the serum lipid constituents. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF grant 0312727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasch, P., Beekes, M., Schmitt, J. et al. Detection of preclinical scrapie from serum by infrared spectroscopy and chemometrics. Anal Bioanal Chem 387, 1791–1800 (2007). https://doi.org/10.1007/s00216-006-0764-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0764-z

Keywords

Navigation