Skip to main content

Advertisement

Log in

Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Adulteration of extra virgin olive oil with sunflower oil is a major issue for the olive oil industry. In this paper, the potential of total synchronous fluorescence (TSyF) spectra to differentiate virgin olive oil from sunflower oil and synchronous fluorescence (SyF) spectra combined with multivariate analysis to assess the adulteration of virgin olive oil are demonstrated. TSyF spectra were acquired by varying the excitation wavelength in the region 270–720 nm and the wavelength interval (Δλ) in the region from 20 to 120 nm. TSyF contour plots for sunflower, in contrast to virgin olive oil, show a fluorescence region in the excitation wavelength range 325–385 nm. Fifteen different virgin olive oil samples were adulterated with sunflower oil at varying levels (0.5–95%) resulting in one hundred and thirty six mixtures. The partial least-squares regression model was used for quantification of the adulteration using wavelength intervals of 20 and 80 nm. This technique is useful for detection of sunflower oil in virgin olive oil at levels down to 3.4% (w/v) in just two and a half minutes using an 80-nm wavelength interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Stark AH, Madar Z (2002) Nutr Rev 60:170–176

    Article  Google Scholar 

  2. International Olive Oil Council COI/T.15/NC no.3, Madrid, Spain, 2003

  3. Allen JC, Hamilton RJ (1983) Rancidity in foods. Blackie Academic, New York

    Google Scholar 

  4. Andrikopoulos NK, Giannakis IG, Tzamtzis V (2001) J Chromatogr Sci 39:137–145

    CAS  Google Scholar 

  5. Aparicio R, Aparicio-Ruíz R (2000) J Chromatogr A 881:93–104

    Article  CAS  Google Scholar 

  6. Tsimidou M, Macrae R (1987) Food Chem 25:251–258

    Article  CAS  Google Scholar 

  7. Fragaki G, Spyros A, Siragakis G, Salivaras E, Dais P (2005) J Agr Food Chem 53:2810–2816

    CAS  Google Scholar 

  8. Mavromoustakos T, Zervou M, Bonas G, Kolocouris A, Petrakis P (2000) J Am Oil Chem Soc 77:405–411

    Article  CAS  Google Scholar 

  9. Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) Anal Sci 20:935–940

    Article  CAS  Google Scholar 

  10. Yang H, Irudayaraj J (2001) J Am Oil Chem Soc 78:889–895

    Article  CAS  Google Scholar 

  11. López-Díez EC, Bianchi G, Goodacre R (2003) J Agr Food Chem 51:6145–6150

    Article  Google Scholar 

  12. Ozen BF, Mauer LJ (2002) J. Agr. Food Chem., 50:3898–3901

    Article  CAS  Google Scholar 

  13. Skoulika SG, Georgiou CA (2003) Appl Spectrosc 57:407–412

    Article  CAS  Google Scholar 

  14. Özgül-Yücel S, Proctor A (2004) J Am Oil Chem Soc 81:221–224

    Article  Google Scholar 

  15. Wolfbeis OS, Leiner M (1984) Mikrochim Acta 1:221–233

    Article  CAS  Google Scholar 

  16. Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2004) J Fluoresc 14:25–35

    Article  CAS  Google Scholar 

  17. Sayago A, Morales MT, Aparicio R (2004) Eur Food Res Technol 218:480–483

    Article  CAS  Google Scholar 

  18. Guimet F, Ferré J, Boqué R, Rius FX (2004) Anal Chim Acta 515:75–85

    Article  CAS  Google Scholar 

  19. Vo-Dinh T (1978) Anal Chem 50:396–401

    Article  Google Scholar 

  20. Patra D, Mishra AK (2002) Trends Anal Chem 21:787–798

    Article  CAS  Google Scholar 

  21. Sikorska E, Gorecki T, Khmelinskii IV, Sikorski M, Koziol J (2005) Food Chem 89:217–225

    Article  CAS  Google Scholar 

  22. Poulli KI, Mousdis GA, Georgiou CA (2005) Anal Chim Acta 542:151–156

    Article  CAS  Google Scholar 

  23. Ryder AG (2004) J Fluoresc 14:99–104

    Article  CAS  Google Scholar 

  24. Patra D, Mishra AK (2002) Anal Bioanal Chem 373:304–309

    Article  CAS  Google Scholar 

  25. Lakowicz JR (1999) Instrumentation for fluorescence spectroscopy. In: Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  26. Brereton RG (2000) Analyst 125:2125–2154

    Article  CAS  Google Scholar 

  27. Kyriakidis NB, Skarkalis P (2000) J AOAC Int 83:1435–1439

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Greek General Secretariat for Research and Technology through a PENED 2003 grant and Minerva S.A., Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos A. Georgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulli, K.I., Mousdis, G.A. & Georgiou, C.A. Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil. Anal Bioanal Chem 386, 1571–1575 (2006). https://doi.org/10.1007/s00216-006-0729-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0729-2

Keywords