Skip to main content
Log in

Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel protocol for the synthesis of dye-encapsulating liposomes tagged with DNA oligonucleotides at their outer surface was developed. These liposomes were optimized for use as signal enhancement agents in lateral-flow sandwich-hybridization assays for the detection of single-stranded RNA and DNA sequences. Liposomes were synthesized using the reverse-phase evaporation method and tagged with oligonucleotides by adding cholesteryl-modified DNA probes to the initial lipid mixture. This resulted in a greatly simplified protocol that provided excellent control of the probe coverage on the liposomes and cut the preparation time from 16 hours to just 6 hours. Liposomes were prepared using probe concentrations ranging from 0.00077 to 0.152 mol% of the total lipid, several hydrophobic and polyethylene glycol-based spacers between the cholesteryl anchor and the probe, and liposome diameters ranging from 208 nm to 365 nm. The liposomes were characterized by dynamic light scattering, visible spectroscopy, and fluorescence spectroscopy. Their signal enhancement functionality was compared by using them in lateral-flow optical biosensors for the detection of single-stranded DNA sequences. In these assays, an optimal reporter probe concentration of 0.013 mol%, liposome diameter of 315 nm, and liposome optical density of 0.4–0.6 at 532 nm were found. The spacer length between the cholesteryl anchor and the probe showed no significant effect on the signals in the lateral-flow assays. The results presented here provide important data for the general use of liposomes as labels in analytical assays, with specific emphasis on nucleic acid detection via lateral flow assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cholesteryl-TEG:

1-dimethoxytrityl-3-O-(N-cholesteryl-3-aminopropyl)-triethyleneglycolyl-glyceryl-2-O-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramidite

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPG:

1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]

NASBA:

nucleic acid sequence based amplification

SATA:

N-succinimidyl S-acetylthioacetate

SRB:

sulforhodamine B

Sulfo-KMUS:

N-[κ-maleimidoundecanoyloxy]sulfosuccinimide ester

References

  1. Zhou X, Huang L, Li S (2001) Biosens Bioelectron 16:85–95

    Article  CAS  Google Scholar 

  2. Iqbal S, Mayo M, Bruno J, Bronk B, Batt C, Chambers J (2001) Biosens Bioelectron 15:549–578

    Article  Google Scholar 

  3. Kricka L (2002) Ann Clin Biochem 39:114–129

    Article  CAS  Google Scholar 

  4. Kricka L (1999) Clin Chem 45:453–458

    CAS  Google Scholar 

  5. Rule G, Montagna R, Durst R (1997) Anal Biochem 244:260–269

    Article  CAS  Google Scholar 

  6. Rule G, Montagna R, Durst R (1996) Clin Chem 42:1206–1209

    CAS  Google Scholar 

  7. Baeumner A, Cohen R, Miksic V, Min J (2003) Biosens Bioelectron 18:405–413

    Article  CAS  Google Scholar 

  8. Baeumner A, Schlesinger N, Slutzki N, Romano J, Lee EM, Montagna RA (2002) Anal Chem 74:1442–1448

    Article  CAS  Google Scholar 

  9. Hartley H (2002) A rapid and sensitive Bacillus anthracis biosensor. MS Thesis, Cornell University, Ithaca, NY

  10. Baeumner A, Pretz J, Fang S (2004) Anal Chem 76:888–894

    Article  CAS  Google Scholar 

  11. Robinson A, Creeth J, Jones M (1998) Biochim Biophys Acta 1369:278–286

    Article  CAS  Google Scholar 

  12. Jones M, Kilpatrick P, Carbonell R (1993) Biotechnol Prog 9:242–258

    Article  CAS  Google Scholar 

  13. Jones M, Kilpatrick P, Carbonell R (1994) Biotechnol Prog 10:174–186

    Article  CAS  Google Scholar 

  14. Plant A, Brizgys M, Locascio-Brown L, Durst R (1989) Anal Biochem 176:420–426

    Article  CAS  Google Scholar 

  15. Rongen H, van der Horst H, Hugenholtz G, Bult A, Bennekom W, van der Meide P (1994) Anal Chim Acta 287:191–199

    Article  CAS  Google Scholar 

  16. Rongen H, van Nierop T, van der Horst H, Rombouts R, van der Meide P, Bult A, Bennekom W (1995) Anal Chim Acta 306:333–341

    Article  CAS  Google Scholar 

  17. Esch M, Locascio L, Tarlov M, Durst R (2001) Anal Chem 73:2952–2958

    Article  CAS  Google Scholar 

  18. Zaytseva N, Montagna R, Lee E, Baeumner A (2005) Anal Bioanal Chem 380:46–53

    Google Scholar 

  19. Ho J, Durst R (2000) Anal Chim Acta 414:51–60

    Article  CAS  Google Scholar 

  20. Chen C, Baeumner A, Durst R (2005) Talanta 67:205–211

    Article  CAS  Google Scholar 

  21. Barbet J, Machet P, Leserman L (1981) J Supramol Struct Cell Biochem 16:243–258

    Article  CAS  Google Scholar 

  22. Martin FJ, Heath TD (1992) Covalent attachment of proteins to liposomes. In: New RRC (ed) Liposomes, a practical approach. IRL Press/Oxford University Press, Oxford, pp 163–182

  23. Zhang N, Ping Q, Huang G, Xu W (2005) Int J Pharm 294:247–259

    Article  CAS  Google Scholar 

  24. Kung V, Redemann C (1986) Biochem Biophys Acta 862:435–439

    Article  CAS  Google Scholar 

  25. Hansen C, Yao G, Moase E, Zalipsky S, Allen T (1995) Biochim Biophys Acta 1239:133–144

    Article  Google Scholar 

  26. Hartley H, Baeumner A (2003) Anal Bioanal Chem 376:319–327

    CAS  Google Scholar 

  27. Wen H, DeCory T, Borejsza-Wysocki W, Durst R (2006) Talanta 68:1264–1272

    Article  CAS  Google Scholar 

  28. Bredehorst R, Ligler F, Kusterbeck A, Chang E, Gaber B, Vogel C (1986) Biochemistry 25:5693–5698

    Article  CAS  Google Scholar 

  29. Xu C, Taylor P, Ersoz M, Fletcher P, Paunov V (2003) J Mater Chem 13:3044–3048

    Article  CAS  Google Scholar 

  30. Henderson GB, Stein CA (1995) Nucleic Acids Res 23:3726–3731

    Article  CAS  Google Scholar 

  31. Letsinger RL, Zhang G, Sun DK, Ikeuchi T, Sarin PS (1989) Proc Natl Acad Sci USA 86:6553–6556

    Article  CAS  Google Scholar 

  32. Krieg A, Tonkinson J, Matson S, Zhao Q, Saxon M, Zhang L, Bhanja U, Yakubov L, Stein C (1993) Proc Natl Acad Sci USA 90:1048–1052

    CAS  Google Scholar 

  33. Bartlett G (1959) J Biol Chem 234:466–468

    CAS  Google Scholar 

  34. Small D (1967) J Lipid Res 8:551–557

    CAS  Google Scholar 

  35. Israelachvili J, Mitchell D (1975) Biochim Biophys Acta 389:13–19

    Article  CAS  Google Scholar 

  36. Fiske C, SubbaRow Y (1925) J Biol Chem 66:375–399

    CAS  Google Scholar 

  37. Esch M, Baeumner A, Durst R (2001) Anal Chem 73:3162–3167

    Article  CAS  Google Scholar 

  38. Limanto J, Tallarico J, Porter J, Khuong K, Houk K, Snapper M (2002) J Am Chem Soc 124:14748–14758

    Article  CAS  Google Scholar 

  39. Muller G, Schmidt B, Jiřiček J, Bünzli J, Schenk K (2003) Acta Crystal C 59:o353–o356

    Article  CAS  Google Scholar 

  40. Berman H, Olson W, Beveridge D, Westbrook J, Gelbin A, Demeny T, Hsieh S, Srinivasan A, Schneider B (1992) Biophys J 63:751–759

    Article  CAS  Google Scholar 

  41. Mrevlishvili G, Kankia B, Mdzinarashvili T, Brelidze T, Khvedelidze M, Metreveli N, Razmadze G (1998) Chem Phys Lipids 94:139–143

    Article  CAS  Google Scholar 

  42. Huang W, Zhang Z, Han X, Tang J, Wang J, Dong S, Wang E (2003) Bioelectrochemistry 59:21–27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. John Randolph of Glen Research Corporation for calculating the lengths of the spacers used in this study. We also thank Dr. John C. March for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje J. Baeumner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, K.A., Baeumner, A.J. Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem 386, 1335–1343 (2006). https://doi.org/10.1007/s00216-006-0705-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0705-x

Keywords

Navigation