Analytical and Bioanalytical Chemistry

, Volume 386, Issue 2, pp 249–255 | Cite as

In situ characterisation of a microorganism surface by Raman microspectroscopy: the shell of Ascaris eggs

  • Fabienne Quilès
  • Jean-Yves Balandier
  • Sandrine Capizzi-Banas
Original Paper


Intestinal nematodes are very common human parasites and a single species, Ascaris lumbricoïdes, is estimated to infect a quarter of the world’s population. A sticky external layer covers their eggs. This work shows that Raman vibrational confocal spectroscopy is able to give information on the biochemical composition of the shell of Ascaris eggs. The biochemical localised characterisation of Ascaris eggs was performed directly on the eggs in their aqueous environment. The studied parasites came from two origins: dissections of adult females and extractions from biosolid sludges. The presence of mucopolysaccharides, proteins and chitin in the shell was demonstrated. The presence of ascaroside compounds was shown particularly via the narrow and intense bands from the organised long CH2 chains. To the best of our knowledge, this is the first time that the latter have been observed in Raman vibrational spectra of microorganisms. Hydration of the shell was different depending on the intensity of the colour of the sludge eggs. Knowledge of the biochemical structural properties of egg surfaces would be useful to understand the egg adhesion phenomena on vegetables contaminated by reused wastewater.


Ascaris Nematodes Raman spectroscopy Mucopolysaccharide Ascarosides Surface 

Supplementary material


  1. 1.
    Crompton DWT (2001) Adv Parasitol 48:285–375CrossRefGoogle Scholar
  2. 2.
    Meng XQ, Wang SS, Wang BX, Ying GH, Li XY, Zhao YZ (1981) Scan Electron Microsc III:187–190Google Scholar
  3. 3.
    Lysek H, Malinsky J, Janisch R (1985) Folia Parasitol 32:381–384Google Scholar
  4. 4.
    Bartley JP, Bennett EA, Darben PA (1996) J Nat Prod 59:921–926CrossRefGoogle Scholar
  5. 5.
    Wharton D (1980) Parasitology 81:447–463CrossRefGoogle Scholar
  6. 6.
    Sromava D, Lysek H (1990) Folia Parasitol 37:77–80Google Scholar
  7. 7.
    Monné L, Hönig G (1954) Arkiv för Zoologi 7:261–272Google Scholar
  8. 8.
    Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B (2000) Anal Chem 72:5529–5534CrossRefGoogle Scholar
  9. 9.
    Rösch P, Schmitt M, Kiefer W, Popp J (2003) J Mol Struct 661–662:363–369CrossRefGoogle Scholar
  10. 10.
    Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Anal Chem 76:4452–4458CrossRefGoogle Scholar
  11. 11.
    Huang YS, Karashima T, Yamamoto M, Ogura T, Hamaguchi H (2004) J Raman Spectrosc 35:525–526Google Scholar
  12. 12.
    Capizzi-Banas S, Maux M, Schwartzbrod J (2002) Helminthologia 39:197–204Google Scholar
  13. 13.
    Control of pathogens and vector attraction in sewage sludge (1999) EPA/625/R-92/013, 1-151. Washington DC, US EPAGoogle Scholar
  14. 14.
    Fairbairn D (1957) Exp Parasitol 6:491–554CrossRefGoogle Scholar
  15. 15.
    Magat WJ, Hubbard WJ, Jeska EL (1972) Exp Parasitol 32:102–108CrossRefGoogle Scholar
  16. 16.
    Fairbairn D (1955) Can J Biochem Physiol 33:122–129Google Scholar
  17. 17.
    Borchman D, Tang D, Yappert MC (1999) Biospectroscopy 5:151–167CrossRefGoogle Scholar
  18. 18.
    Weng YM, Weng RH, Tzeng CY, Chen W (2003) Appl Spectrosc 57:413–418CrossRefGoogle Scholar
  19. 19.
    Spiro TG, Gaber BP (1977) Ann Rev Biochem 46:553–572CrossRefGoogle Scholar
  20. 20.
    Simons L, Bergström G, Blomfelt G, Forss S, Stenbäck H, Wansén G (1972) Comment Phys-Math 42:125–207Google Scholar
  21. 21.
    (1987) Biological applications of Raman spectroscopy. Wiley-Interscience, New YorkGoogle Scholar
  22. 22.
    Luu DV, Cambon L, Lapeyre C (1980) J Raman Spectrosc 9:172–175CrossRefGoogle Scholar
  23. 23.
    Bansil R, Yannas IV, Stanley HE (1978) Biochim Biophys Acta 541:535–542Google Scholar
  24. 24.
    Lee SA, Myers LC, Powell JW, Suleski TJ, Rupprecht A (1993) J Biomol Struct Dyn 11:191–201Google Scholar
  25. 25.
    Atha DH, Gaigalas AK, Reipa V (1996) J Pharm Sci 85:52–56CrossRefGoogle Scholar
  26. 26.
    Galat A, Popowicz J (1978) Bull Acad Pol Sci, Sér Sci Biol 26:519–524Google Scholar
  27. 27.
    Gremlich HU, Yan B (2001) Infrared and Raman spectroscopy of biological materials. Practical spectroscopy series, vol 24. Marcel Dekker, New York, pp 1–581Google Scholar
  28. 28.
    Edwards HGM, Farwell DW, Williams AC (1994) Spectrochim Acta 50A:807–811Google Scholar
  29. 29.
    Beattie JR, Bell SEJ, Moss BW (2004) Lipids 39:407–419CrossRefGoogle Scholar
  30. 30.
    Thomas GJ Jr, Kyogoku Y (1976) Infrared and Raman spectroscopy. Practical spectroscopy series. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fabienne Quilès
    • 1
  • Jean-Yves Balandier
    • 1
  • Sandrine Capizzi-Banas
    • 1
  1. 1.Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME)U.M.R. 7564 CNRS-Université Henri PoincaréVillers-lès-NancyFrance

Personalised recommendations