Skip to main content

Advertisement

Log in

HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

HILIC mode columns were prepared by an on-column polymerization of acrylamide on a monolithic silica capillary column modified with N-(3-trimethoxysilylpropyl)methacrylamide as the anchor group. The products showed HILIC mode retention characteristics with three times greater permeability and slightly higher column efficiency compared to a commercially available amide-type HILIC column packed with 5-μm particles. The selectivity of the monolithic silica-based column was similar to that of the particulate column for each group of solutes towards nucleosides, nucleic bases and carbohydrate derivatives, although a considerable difference was observed in the selectivity for the solute groups. Although the retention of solutes based on the polar functionality was much smaller with the monolithic silica columns, which had a smaller phase ratio, than with the particle-packed column, the former can achieve better separation utilizing the high permeability and higher column efficiencies of a longer column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Majors RE (2000) LC·GC 18:262–285

    CAS  Google Scholar 

  2. Sander LC, Sharpless KE, Pursch M (2000) J Chromatogr A 880:189–202

    Article  CAS  Google Scholar 

  3. Alpert AJ (1990) J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  4. Tanaka H, Zhou X, Ohira M (2003) J Chromatogr A 987:119–125

    Article  CAS  Google Scholar 

  5. Yoshida T (1997) Anal Chem 69:3038–3043

    Article  CAS  Google Scholar 

  6. Xu MC, Peterson DS, Rohr T, Svec F, Fréchet JMJ (2003) Anal Chem 75:1011–1021

    Article  CAS  Google Scholar 

  7. Gilar M, Olivova, P, Daly AE, Gebler JC (2005) Anal Chem 77:6426–6434

    Article  CAS  Google Scholar 

  8. Tolstikov VV, Fiehn O (2002) Anal Biochem 301:298–307

    Article  CAS  Google Scholar 

  9. Pisano R, Breda M, Grassi S, James CA (2005) J Pharm Biomed Anal 38:738–745

    Article  CAS  Google Scholar 

  10. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Quilliam MA, Tubaro A, Poletti R (2005) Rapid Commun Mass Spectr 19:2030–2038

    Article  CAS  Google Scholar 

  11. Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MAJ, Mehlert A, Pauly M, Orlando R (1994) J Chromatogr A 676:191–202

    Article  CAS  Google Scholar 

  12. Yoshida T, Okada T (1999) J Chromatogr A 841:19–32

    Article  CAS  Google Scholar 

  13. Yoshida T (1998) J Chromatogr A 808:105–112

    Article  CAS  Google Scholar 

  14. Yoshida T, Okada T, Hobo T, Chiba R (2000) Chromatographia 52:418–424

    Article  CAS  Google Scholar 

  15. Cerny HS, Affolter M, Cerny C (2003) Anal Chem 75:2349–2354

    Article  CAS  Google Scholar 

  16. Olsen BA (2001) J Chromatogr A 913:113–122

    Article  CAS  Google Scholar 

  17. Jandera P (2002) J Chromatogr A 965:239–261

    Article  CAS  Google Scholar 

  18. Hodges RS, Chen Y, Kopecky E, Mant CT (2004) J Chromatogr A 1053:161–172

    Article  CAS  Google Scholar 

  19. Guo Y, Gaiki S (2005) J Chromatogr A 1074:71–80

    Article  CAS  Google Scholar 

  20. Oyler AR, Armstrong BL, Cha JY, Zhou MX, Yang Q, Robinson RI, Dunphy R, Burinsky DJ (1996) J Chromatogr A 724:378–383

    Article  CAS  Google Scholar 

  21. Pack BW, Risley DS (2005) J Chromatogr A 1073:269–275

    Article  CAS  Google Scholar 

  22. Takahashi N (1996) J Chromatogr A 720:217–225

    Article  CAS  Google Scholar 

  23. Churms SC (1996) J Chromatogr A 720:75–91

    Article  CAS  Google Scholar 

  24. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:420A–429A

    Article  CAS  Google Scholar 

  25. Cabrera K (2004) J Sep Sci 27:843–852

    Article  CAS  Google Scholar 

  26. Eeltink S, Decrop WMC, Rozing GP, Schoenmakers PJ, Kok WT (2004) J Sep Sci 27:1431–1440

    Article  CAS  Google Scholar 

  27. Rieux L, Niederländer H, Verpoorte E, Bischoff R (2005) J Sep Sci 28:1628–1641

    Article  CAS  Google Scholar 

  28. Motokawa M, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Jinnai H, Hosoya K, Ikegami T, Tanaka N (2002) J Chromatogr A 961:53–63

    Article  CAS  Google Scholar 

  29. Ikegami T, Dicks E, Kobayashi H, Morisaka H, Tokuda D, Cabrera K, Hosoya H, Tanaka N (2004) J Sep Sci 27:1292–1302

    Article  CAS  Google Scholar 

  30. Kondo A, Suzuki J, Kuraya N, Hase S, Kato I, Ikenaka T (1990) Agric Biol Chem 54:2169–2170

    CAS  Google Scholar 

  31. Ohara K, Sano M, Kondo A, Kato I (1991) J Chromatogr 586:35–41

    Article  CAS  Google Scholar 

  32. Shen X, Perreault H (1998) J Chromatogr A 811:47–59

    Article  CAS  Google Scholar 

  33. Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Cabrera K, Lubda D (2000) J High Resol Chromatogr 23:111–116

    Article  CAS  Google Scholar 

  34. N-(3-trimethoxysilylpropyl)methacrylamide was prepared by adding methacryloyl chloride (15.6 ml, 161 mmol) in THF (15 ml) for 1 h to a mixture of APS (25 ml, 107 mmol) and triethylamine (22.5 ml, 161 mmol) in THF (50 ml) at 0 °C. The mixture was filtered through PTFE membrane filter to remove any salts, and THF was distilled in vacuo to give the desired product as a brown viscous liquid (28.5 g, 98%)

  35. Shawki SM, Hamielec AE (1979) J Appl Poly Sci 23:3323–3339

    Article  CAS  Google Scholar 

  36. Scholtan W (1954) Makromol Chem 14:169–178

    Article  CAS  Google Scholar 

  37. Bristow PA, Knox JH (1977) Chromatographia 10:279–289

    Article  CAS  Google Scholar 

  38. Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER (2003) J Am Chem Soc 125:13836–13849

    Article  CAS  Google Scholar 

  39. Ishizuka N, Minakuchi H, Nakanishi K, Soga N, Nagayama H, Hosoya K, Tanaka N (2000) Anal Chem 72:1275–1280

    Article  CAS  Google Scholar 

  40. Fukumoto T, Ihara H, Sakaki S, Shosenji H, Hirayama C (1994) J Chromatogr A 672:237–241

    Article  CAS  Google Scholar 

  41. Oku H, Hase S, Ikenaka T (1990) Anal Biochem 185:331–334

    Article  CAS  Google Scholar 

  42. Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, Araki M, Tanaka N (1989) J Chromatogr Sci 27:721–728

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by two Grants-in-Aid for Scientific Research funded by the Ministry of Education, Sports, Culture, Science and Technology, No. 14340234 and No. 14740403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Ikegami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikegami, T., Fujita, H., Horie, K. et al. HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide. Anal Bioanal Chem 386, 578–585 (2006). https://doi.org/10.1007/s00216-006-0606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0606-z

Keywords