Skip to main content
Log in

Presence and origin of large amounts of d-proline in the urine of mutant mice lacking d-amino acid oxidase activity

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Using a column-switching HPLC system combining a micro-ODS column and a chiral column, the amounts of d-proline (d-Pro) have been determined in 18 tissues, plasma and urine of mice. To avoid the enzymatic degradation of d-amino acids in vivo, a mutant mouse strain lacking d-amino acid oxidase activity (ddY/DAO mouse) was used. In the brain, relatively large amounts of d-Pro were observed in the anterior pituitary, posterior pituitary and pineal glands. In the peripheral tissues, the amounts of d-Pro were high in the pancreas and kidney. Above all, it is surprising that the ddY/DAO mice excreted large amounts of d-Pro in their urine (433 nmol/mL, 20 times that of l-Pro). The origin of d-Pro has also been investigated. By comparing germ-free mice and gnotobiotic mice, intestinal bacteria were shown to have no effect on the urinary d-Pro amount. Concerning the dietary origin, a notable amount of d-Pro was still excreted in the urine after starvation for 4 days, suggesting that some of the d-Pro is produced in the mice. Age-dependent changes in the urinary d-Pro amount have also been investigated from the postnatal 1st month up to 12 months, and ddY/DAO mice were found to excrete large amounts of d-Pro in the urine constantly throughout their lives.

Kenji Hamase is Associate Professor in the Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences at Kyushu University. His current research interests focus on the development of analytical methods for d-amino acids and the study of their physiological functions and diagnostic values. He received the Japanese Society for Analytical Chemistry Award for Young Scientists in 2003, and the PSJ Award for Young Scientists in 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujii N, Saito T (2004) Chem Rec 4:267–278

    Article  CAS  Google Scholar 

  2. Hamase K, Morikawa A, Zaitsu K (2002) J Chromatogr B 781:73–91

    Article  CAS  Google Scholar 

  3. Fujii N (2002) Orig Life Evol Biosph 32:103–127

    Article  CAS  Google Scholar 

  4. Nishikawa T (2005) Biol Pharm Bull 28:1561–1565

    Article  CAS  Google Scholar 

  5. Hashimoto A, Oka T (1997) Prog Neurobiol 52:325–353

    Article  CAS  Google Scholar 

  6. Snyder SH, Kim PM (2000) Neurochem Res 25:553–560

    Article  CAS  Google Scholar 

  7. Schell MJ, Molliver ME, Snyder SH (1995) Proc Natl Acad Sci USA 92:3948–3952

    Article  CAS  Google Scholar 

  8. Furuchi T, Homma H (2005) Biol Pharm Bull 28:1566–1570

    Article  CAS  Google Scholar 

  9. Wolosker H, D’Aniello A, Snyder SH (2000) Neuroscience 100:183–189

    Article  CAS  Google Scholar 

  10. D’Aniello G, Tolino A, D’Aniello A, Errico F, Fisher GH, Fiore MMD (2000) Endocrinology 141:3862–3870

    Article  CAS  Google Scholar 

  11. Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K (1998) Biochem Biophys Res Commun 248:641–647

    Article  CAS  Google Scholar 

  12. Nagata Y, Masui R, Akino T (1992) Experientia 48:986–988

    Article  CAS  Google Scholar 

  13. Armstrong DW, Gasper MP, Lee SH, Ercal N, Zukowski J (1993) Amino Acids 5:299–315

    Article  CAS  Google Scholar 

  14. Brückner H, Schieber A (2001) Biomed Chromatogr 15:166–172

    Article  Google Scholar 

  15. Nagata Y, Konno R, Niwa A (1994) Metabolism 43:1153–1157

    Article  CAS  Google Scholar 

  16. Kampel D, Kupferschmidt R, Lubec G (1990) In: Lubec G, Rosenthal GA (eds) Amino acids; chemistry biology and medicine. Escom, Leiden, pp 1164–1171

    Google Scholar 

  17. Schieber A, Brückner H, Rupp-Classen M, Specht W, Nowitzki-Grimm S, Classen HG (1997) J Chromatogr B 691:1–12

    Article  CAS  Google Scholar 

  18. Cherkin A, Davis JL, Garman MW (1978) Pharmacol Biochem Behav 8:623–625

    Article  CAS  Google Scholar 

  19. Pilone MS (2000) Cell Mol Life Sci 57:1732–1747

    Article  CAS  Google Scholar 

  20. Konno R, Yasumura Y (1992) Int J Biochem 24:519–524

    Article  CAS  Google Scholar 

  21. Hamase K, Inoue T, Morikawa A, Konno R, Zaitsu K (2001) Anal Biochem 298:253–258

    Article  CAS  Google Scholar 

  22. Konno R, Yasumura Y (1983) Genetics 103:277–285

    CAS  Google Scholar 

  23. Konno R, Yasumura Y (1988) Lab Anim Sci 38:292–295

    CAS  Google Scholar 

  24. Konno R, Oowada T, Ozaki A, Iida T, Niwa A, Yasumura Y, Mizutani T (1993) Am J Physiol 265:G699–G703

    CAS  Google Scholar 

  25. Hamase K, Konno R, Morikawa A, Zaitsu K (2005) Biol Pharm Bull 28:1578–1584

    Article  CAS  Google Scholar 

  26. Corrigan JJ (1969) Science 164:142–149

    Article  CAS  Google Scholar 

  27. Konno R, Niwa A, Yasumura Y (1990) Biochem J 268:263–265

    CAS  Google Scholar 

  28. Cardinale GJ, Abeles RH (1968) Biochemistry 7:3970–3978

    Article  CAS  Google Scholar 

  29. Rudnick G, Abeles RH (1975) Biochemistry 14:4515–4522

    Article  CAS  Google Scholar 

  30. D’Aniello A, Fiore MMD, D’Aniello G, Colin FE, Lewis G, Setchell BP (1998) FEBS Lett 436:23–27

    Article  CAS  Google Scholar 

  31. Long Z, Homma H, Lee J-A, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) FEBS Lett 434:231–235

    Article  CAS  Google Scholar 

  32. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Proc Natl Acad Sci USA 96:721–725

    Article  CAS  Google Scholar 

  33. Hashimoto A, Oka T, Nishikawa T (1995) Eur J Neurosci 7:1657–1663

    Article  CAS  Google Scholar 

  34. Morikawa A, Hamase K, Zaitsu K (2003) Anal Biochem 312:66–72

    Article  CAS  Google Scholar 

  35. Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Biochim Biophys Acta 1334:214–222

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Mizutani, Ozaki and Oowada, RIKEN, for the collection of urine from the germ-free and gnotobiotic ddY/DAO mice. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Takeda Science Foundation, and Industrial Technology Research Grant Program in ’05 from New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Zaitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamase, K., Takagi, S., Morikawa, A. et al. Presence and origin of large amounts of d-proline in the urine of mutant mice lacking d-amino acid oxidase activity. Anal Bioanal Chem 386, 705–711 (2006). https://doi.org/10.1007/s00216-006-0594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0594-z

Keywords

Navigation