Skip to main content

Advertisement

Log in

A thermodynamic study on the complexation between riboflavin and a diaminotriazine derivative mediated by triple hydrogen bonds at water/oil interfaces

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The changes in Gibbs free energy (ΔG int), enthalpy (ΔH int) and entropy (TΔS int) upon complexation between riboflavin (RF) and N,N-dioctadecyl-[1,3,5]triazine-2,4,6-triamine (DTT), mediated by triple hydrogen bonds at water/carbon tetrachloride, trichloroethylene and chloroform interfaces, were determined via temperature-controlled interfacial tension measurements. It was shown that hydrogen bonding interactions between RF and DTT were best characterized by large and negative ΔH int values, unlike those predicted from either the polarity in each phase or the arithmetic average of the polarities in the two phases. Furthermore, the ΔH int values became more positive as the dielectric constant of the oil phase was increased. These results strongly indicate that ΔH int is governed by the dielectric properties of the oil phase. Adsorption of RF, DTT and the RF-DTT complex at the water/oil interface gave rise to restrictions on the translational and rotational motions of these species, as demonstrated by the ΔS int values observed, which is another characteristic of interfacial complexation. The thermodynamic parameters evaluated in the present study revealed the characteristic complexation behavior that occurs at a water/oil interface, as mediated by hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ariga K, Kunitake T (1998) Acc Chem Res 31:371–378

    Article  CAS  Google Scholar 

  2. Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644–2676

    Article  CAS  Google Scholar 

  3. Shigemori K, Nishizawa S, Yokobori T, Shioya T, Teramae N (2002) New J Chem 26:1102–1104

    Article  CAS  Google Scholar 

  4. Ishizaka S, Kinoshita S, Nishijima Y, Kitamura N (2003) Anal Chem 75:6035–6042

    Article  CAS  Google Scholar 

  5. Ishizaka S, Kitamura N (2004) Anal Sci 20:1587–1592

    Article  CAS  Google Scholar 

  6. Kurihara K, Ohto K, Honda Y, Kunitake T (1991) J Am Chem Soc 113:5077–5079

    Article  CAS  Google Scholar 

  7. Sakurai M, Tamagawa H, Inoue Y, Ariga K, Kunitake T (1997) J Phys Chem B 101:4810–4816

    Article  CAS  Google Scholar 

  8. Ishizaka S, Kitamura N (2001) Bull Chem Soc Jpn 74:1983–1998

    Article  CAS  Google Scholar 

  9. Ishizaka S, Kim H-B, Kitamura N (2001) Anal Chem 73:2421–2428

    Article  CAS  Google Scholar 

  10. Ishizaka S, Habuchi S, Kim H-B, Kitamura N (1999) Anal Chem 71:3382–3389

    Article  CAS  Google Scholar 

  11. Ishizaka S, Nakatani K, Habuchi S, Kitamura N (1999) Anal Chem 71:419–426

    Article  CAS  Google Scholar 

  12. Adamson W (1990) Physical chemistry of surfaces. Wiley, New York, p 27

  13. Rotenberg Y, Boruvka L, Neumann AW (1983) J Colloid Interf Sci 93:169–183

    Article  CAS  Google Scholar 

  14. Kakiuchi T, Nakanishi M, Senda M (1988) Bull Chem Soc Jpn 61:1845–1851

    Article  CAS  Google Scholar 

  15. Wilcox CS, Cowart MD (1986) Tetrahedron Lett 27:5563–5566

    Article  CAS  Google Scholar 

  16. Jadzyn J, Malecki J (1972) Acta Phys Polon 41:599–616

    CAS  Google Scholar 

  17. Aquino AJA, Tunega D, Haberhauser G, Gerzabek MH, Lischka H (2002) J Phys Chem A 106:1862–1871

    Article  CAS  Google Scholar 

  18. Yasuda T, Ikawa S (1998) Chem Phys 238:173–178

    Article  CAS  Google Scholar 

  19. Tamagawa H, Sakurai M, Inoue Y, Ariga K, Kunitake T (1997) J Phys Chem B 101:4817–4825

    Article  CAS  Google Scholar 

  20. Steel WH, Damkaci F, Nolan R, Walker RA (2002) J Am Chem Soc 124:4824–4831

    Article  CAS  Google Scholar 

  21. Steel WH, Walker RA (2003) J Am Chem Soc 125:1132–1133

    Article  CAS  Google Scholar 

  22. Steel WH, Walker RA (2003) Nature 424:296–299

    Article  CAS  Google Scholar 

  23. Adrian JC, Wilcox CS (1991) J Am Chem Soc 113:678–680

    Article  CAS  Google Scholar 

  24. Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312–1319

    Article  CAS  Google Scholar 

  25. Rekharsky MV, Inoue Y (1998) Chem Rev 98:1875–1917

    Article  CAS  Google Scholar 

  26. Williams DH, Cox JPL, Doig AJ, Gardner M, Gerhard U, Kaye PT, Lal AR, Nicholls IA, Salter CJ, Mitchell RC (1991) J Am Chem Soc 113:7020–7030

    Article  CAS  Google Scholar 

  27. Hayashi T, Miyahara T, Koide N, Ogoshi H (1997) Chem Commun 19:1865–1866

    Article  Google Scholar 

  28. Richmond GL (2002) Chem Rev 102:2693–2724

    Article  CAS  Google Scholar 

  29. Walker DS, Brown MG, McFearin CL, Richmond GL (2004) J Phys Chem B 108:2111–2114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government, which supported the research (No. 15750061 and No. 13129201 (Priority Research Area on “Nano-Chemistry at Liquid-Liquid Interfaces”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Kitamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaka, S., Nishijima, Y. & Kitamura, N. A thermodynamic study on the complexation between riboflavin and a diaminotriazine derivative mediated by triple hydrogen bonds at water/oil interfaces. Anal Bioanal Chem 386, 749–758 (2006). https://doi.org/10.1007/s00216-006-0573-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0573-4

Keywords

Navigation