Skip to main content
Log in

Miniaturized platforms for the detection of single-nucleotide polymorphisms

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Conventional methods for detecting single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in human beings, are mostly limited by their analysis time and throughputs. In contrast, advances in microfabrication technology have led to the development of miniaturized platforms that can potentially provide rapid high-throughput analysis at small sample volumes. This review highlights some of the recent developments in the miniaturization of SNP detection platforms, including microarray-based, bead-based microfluidic and microelectrophoresis-based platforms. Particular attention is paid to their ease of fabrication, analysis time, and level of throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a,b
Fig. 4
Fig. 5
Fig. 6a,b

Similar content being viewed by others

References

  1. Sachidanandam R et al (2001) Nature 409:928–933

  2. Kruglyak L (1999) Nat Genet 22:139–144

    Article  CAS  Google Scholar 

  3. McCarthy JJ, Hilfiker R (2000) Nat Biotechnol 18:505–508

    Article  CAS  Google Scholar 

  4. Kruglyak L (1997) Nat Genet 17:21–24

    Article  CAS  Google Scholar 

  5. Stoneking M (2001) Nature 409:821–822

    Article  CAS  Google Scholar 

  6. Hattori M, Shibata A, Yoshioka K, Sakaki Y (1993) Genomics 15:415–417

    Article  CAS  Google Scholar 

  7. Hayashi K (1991) PCR Methods Appl 1:34–38

    CAS  Google Scholar 

  8. Huber CG, Premstaller A, Xiao W, Oberacher H, Bonn GK, Oefner PJ (2001) J Biochem Biophys Meth 47:5–19

    Google Scholar 

  9. Germer S, Higuchi R (1999) Genome Res 9:72–78

    CAS  Google Scholar 

  10. Todd AV, Fuery CJ, Impey HL, Applegate TL, Haughton MA (2000) Clin Chem 46:625–630

    CAS  Google Scholar 

  11. Chen X, Kwok PY (1997) Nucleic Acids Res 25:347–353

    Article  Google Scholar 

  12. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D (1998) Nat Biotechnol 16:359–363

    Article  CAS  Google Scholar 

  13. Tyagi S, Bratu DP, Kramer FR (1998) Nat Biotechnol 16:49–53

    Article  CAS  Google Scholar 

  14. Livak KJ (1999) Genet Anal 14:143–149

    CAS  Google Scholar 

  15. Piunno PA, Krull UJ (2005) Anal Bioanal Chem 381:1004–1011

    Article  CAS  Google Scholar 

  16. Ramsay G (1998) Nat Biotech 16:40

    Article  CAS  Google Scholar 

  17. Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467–470

    Article  CAS  Google Scholar 

  18. Wang DG et al (1998) Science 280:1077–1082

    Article  CAS  Google Scholar 

  19. Lindroos K, Liljedahl U, Raitio M, Syvanen AC (2001) Nucleic Acids Res 29:E69–E69

    Article  CAS  Google Scholar 

  20. Kolchinsky A, Mirzabekov A (2002) Hum Mutat 19:343–360

    Article  CAS  Google Scholar 

  21. Drobyshev A, Mologina N, Shik V, Pobedimskaya D, Yershov G, Mirzabekov A (1997) Gene 188:45–52

    Article  CAS  Google Scholar 

  22. Dubiley S, Kirillov E, Mirzabekov A (1999) Nucleic Acids Res 27:e19

    Article  CAS  Google Scholar 

  23. LaForge KS, Shick V, Spangler R, Proudnikov D, Yuferov V, Lysov Y, Mirzabekov A, Kreek MJ (2000) Am J Med Genet 96:604–615

    Article  CAS  Google Scholar 

  24. Hong BJ, Oh SJ, Youn TO, Kwon SH, Park JW (2005) Langmuir 21:4257–4261

    Article  CAS  Google Scholar 

  25. Hong BJ, Sunkara V, Park JW (2005) Nucleic Acids Res 33:e106

    Article  Google Scholar 

  26. Stimpson DI, Knepper SM, Shida M, Obata K, Tajima H (2004) Biotechnol Bioeng 87:99–103

    Article  CAS  Google Scholar 

  27. Tojo Y, Asahina J, Miyashita Y, Takahashi M, Matsumoto N, Hasegawa S, Yohda M, Tajima H (2005) J Biosci Bioeng 99:120–124

    Article  CAS  Google Scholar 

  28. Yuen PK, Li G, Bao Y, Muller UR (2003) Lab Chip 3:46–50

    Article  CAS  Google Scholar 

  29. Peytavi R, Raymond FR, Gagne D, Picard FJ, Jia G, Zoval J, Madou M, Boissinot K, Boissinot M, Bissonnette L, Ouellette M, Bergeron MG (2005) Clin Chem 51:1836–1844

    Article  CAS  Google Scholar 

  30. Wei CW, Cheng JY, Huang CT, Yen MH, Young TH (2005) Nucleic Acids Res 33:e78

    Article  Google Scholar 

  31. Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Proc Natl Acad Sci USA 94:1119–1123

    Article  CAS  Google Scholar 

  32. Chen H, Han J, Li J, Meyyappan M (2004) Biomed Microdev 6:55–60

    Article  CAS  Google Scholar 

  33. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Nat Biotechnol 17:365–370

    Article  CAS  Google Scholar 

  34. Kajiyama T, Miyahara Y, Kricka LJ, Wilding P, Graves DJ, Surrey S, Fortina P (2003) Genome Res 13:467–475

    Article  CAS  Google Scholar 

  35. Peterson DS (2005) Lab Chip 5:132–139

    Article  CAS  Google Scholar 

  36. Verpoorte E (2003) Lab Chip 3:60N–68N

    Article  CAS  Google Scholar 

  37. Russom A, Ahmadian A, Andersson H, Nilsson P, Stemme G (2003) Electrophoresis 24:158–161

    Article  CAS  Google Scholar 

  38. Fan ZH, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R (1999) Anal Chem 71:4851–4859

    Article  CAS  Google Scholar 

  39. Andersson H, Jonsson C, Moberg C, Stemme G (2001) Electrophoresis 22:3876–3882

    Article  CAS  Google Scholar 

  40. Russom A, Haasl S, Ohlander A, Mayr T, Brookes AJ, Andersson H, Stemme G (2004) Electrophoresis 25:3712–3719

    Article  CAS  Google Scholar 

  41. Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) Anal Chem 75:4732–4739

    Article  CAS  Google Scholar 

  42. Shen R et al (2005) Mutat Res 573:70–82

    CAS  Google Scholar 

  43. Gunderson KL et al (2004) Genome Res 14:870–877

    Article  CAS  Google Scholar 

  44. Li AX, Seul M, Cicciarelli J, Yang JC, Iwaki Y (2004) Tissue Antigens 63:518–528

    Article  CAS  Google Scholar 

  45. Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Cytometry 39:131−140

    Article  CAS  Google Scholar 

  46. Chen J, Iannone MA, Li M-S, Taylor JD, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) Genome Res. 10:549–557

    Article  CAS  Google Scholar 

  47. Taylor JD, Briley D, Nguyen Q, Long K, Iannone MA, Li MS, Ye F, Afshari A, Lai E, Wagner M, Chen J, Weiner MP (2001) Biotechniques 30:661–666, 668–669

    CAS  Google Scholar 

  48. Xu H, Sha MY, Wong EY, Uphoff J, Xu Y, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Nucleic Acids Res 31:e43

    Article  Google Scholar 

  49. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631–635

    Article  CAS  Google Scholar 

  50. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) PNAS 86:2766–2770

    Article  CAS  Google Scholar 

  51. Li ZP, Tsunoda H, Okano K, Nagai K, Kambara H (2003) Anal Chem 75:3345–3351

    Article  CAS  Google Scholar 

  52. Tian H, Jaquins-Gerstl A, Munro N, Trucco M, Brody LC, Landers JP (2000) Genomics 63:25–34

    Article  CAS  Google Scholar 

  53. Ito T, Inoue A, Sato K, Hosokawa K, Maeda M (2003) In: Proc Micro Total Analysis Systems, 5–9 October 2003, Squaw Valley, CA, USA

  54. Schmalzing D, Belenky A, Novotny MA, Koutny L, Salas-Solano O, El-Difrawy S, Adourian A, Matsudaira P, Ehrlich D (2000) Nucleic Acids Res 28:E43

    Article  CAS  Google Scholar 

  55. Shi Y, Simpson PC, Scherer JR, Wexler D, Skibola C, Smith MT, Mathies RA (1999) Anal Chem 71:5354–5361

    Article  CAS  Google Scholar 

  56. Medintz I, Wong WW, Berti L, Shiow L, Tom J, Scherer J, Sensabaugh G, Mathies RA (2001) Genome Res 11:413–421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tso Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, J.KK., Liu, WT. Miniaturized platforms for the detection of single-nucleotide polymorphisms. Anal Bioanal Chem 386, 427–434 (2006). https://doi.org/10.1007/s00216-006-0552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0552-9

Keywords

Navigation