Advertisement

Analytical and Bioanalytical Chemistry

, Volume 386, Issue 3, pp 405–415 | Cite as

Comprehensive two-dimensional liquid chromatography

  • Robert A. Shellie
  • Paul R. Haddad
Review

Abstract

Having nearly exhausted the possibilities for generating peak capacity through improvements in column technology, chromatographers are increasingly looking to alternative ways of maximising chromatographic separation. In recent years there has been increasing activity in the field of comprehensive multidimensional separations to meet analysis demands. Comprehensive two-dimensional liquid chromatography (LC×LC) approaches offer high peak capacity which leads to significantly improved analytical performance over single-column liquid chromatography. There are several closely related avenues available for achieving an LC×LC separation and this review pays special attention to the different valve-based interfaces that have been used to comprehensively couple the first and second dimension columns in LC×LC systems. A brief discussion of column choices for selected applications and the conditions employed is also presented.

Keywords

Liquid chromatography HPLC Comprehensive two-dimensional liquid chromatography LC×LC Multidimensional chromatography Peak capacity 

Notes

Acknowledgement

This work was supported under the Australian Research Council’s Discovery funding scheme (project number DP0663781).

References

  1. 1.
    Evans CR, Jorgenson JW (2004) Anal Bioanal Chem 378:1952–1961CrossRefGoogle Scholar
  2. 2.
    Giddings JC (1990) In: Cortes HJ (ed) Multidimensional chromatography. Marcel Dekker, New York, pp 1–27Google Scholar
  3. 3.
    Neue UD (2005) J Chromatogr A 1079:153–161CrossRefGoogle Scholar
  4. 4.
    Swartz ME (2005) LC-GC North Am Suppl 8–14Google Scholar
  5. 5.
    Liu Z, Patterson DG Jr, Lee ML (1995) Anal Chem 67:3840–3845CrossRefGoogle Scholar
  6. 6.
    Schoenmakers P, Marriott P, Beens J (2003) LC-GC Europe 16:335–336 338–339Google Scholar
  7. 7.
    Murphy RE, Schure MR, Foley JP (1998) Anal Chem 70:1585–1594CrossRefGoogle Scholar
  8. 8.
    Schure MR (1997) J Microcol Sep 9:169–176CrossRefGoogle Scholar
  9. 9.
    Erni F, Frei RW (1978) J Chromatogr 149:561–569CrossRefGoogle Scholar
  10. 10.
    Bushey MM, Jorgenson JW (1990) Anal Chem 62:161–167CrossRefGoogle Scholar
  11. 11.
    Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ (1997) Anal Chem 69:1518–1524CrossRefGoogle Scholar
  12. 12.
    Chen X, Kong L, Su X, Fu H, Ni J, Zhao R, Zou H (2004) J Chromatogr A 1040:169–178CrossRefGoogle Scholar
  13. 13.
    Murphy RE, Schure MR, Foley JP (1998) Anal Chem 70:4353–4360CrossRefGoogle Scholar
  14. 14.
    Holland LA, Jorgenson JW (1995) Anal Chem 67:3275–3283CrossRefGoogle Scholar
  15. 15.
    Holland LA, Jorgenson JW (2000) J Microcol Sep 12:371–377CrossRefGoogle Scholar
  16. 16.
    van der Horst A, Schoenmakers PJ (2003) J Chromatogr A 1000:693–709CrossRefGoogle Scholar
  17. 17.
    9th International Symposium on Hyphenated Techniques in Chromatography and Hyphenated Chromatographic Analyzers. February 8th–10th, 2006, York, UKGoogle Scholar
  18. 18.
    Köhne AP, Welsch T (1999) J Chromatogr A 845:463–469CrossRefGoogle Scholar
  19. 19.
    Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA (2004) J Chromatogr A 1041:101–110CrossRefGoogle Scholar
  20. 20.
    Opiteck GJ, Ramirez SM, Jorgenson JW, Moseley MA III (1998) Anal Biochem 258:349–361CrossRefGoogle Scholar
  21. 21.
    Opiteck GJ, Jorgenson JW, Moseley MA III, Anderegg RJ (1998) J Microcol Sep 10:365–375CrossRefGoogle Scholar
  22. 22.
    Venkatramani CJ, Zelechonok Y (2003) Anal Chem 75:3484–3494CrossRefGoogle Scholar
  23. 23.
    Svec F (2004) J Sep Sci 27:747–766CrossRefGoogle Scholar
  24. 24.
    Ikegami T, Tanaka N (2004) Curr Opin Chem Biol 8:527–533CrossRefGoogle Scholar
  25. 25.
    Ikegami T, Hara T, Kimura H, Kobayashi H, Hosoya K, Cabrera K, Tanaka N (2006) J Chromatogr A 1106:112–117CrossRefGoogle Scholar
  26. 26.
    Hu L, Chen X, Kong L, Su X, Ye M, Zou H (2005) J Chromatogr A 1092:191–198CrossRefGoogle Scholar
  27. 27.
    Dugo P, Favoino O, Luppino R, Dugo G, Mondello L (2004) Anal Chem 76:2525–2530CrossRefGoogle Scholar
  28. 28.
    Cortes HJ (1992) J Chromatogr 626:3CrossRefGoogle Scholar
  29. 29.
    Mondello L, Tranchida PQ, Stanek V, Jandera P, Dugo G, Dugo P (2005) J Chromatogr A 1086:91–98CrossRefGoogle Scholar
  30. 30.
    Giddings JC (1995) J Chromatogr A 703:3–15CrossRefGoogle Scholar
  31. 31.
    Ledford EB Jr, Phillips JB, Xu J, Gaines RB, Blomberg J (1996) Am Lab 14:22–25Google Scholar
  32. 32.
    Im K, Kim Y, Chang T, Lee K, Choi N (2006) J Chromatogr A 1103:235–242CrossRefGoogle Scholar
  33. 33.
    Coulier L, Kaal ER, Hankemeier T (2005) J Chromatogr A 1070:79–87CrossRefGoogle Scholar
  34. 34.
    Mondello L. 9th International Symposium on Hyphenated Techniques in Chromatography and Hyphenated Chromatographic Analyzers, February 8th–10th, 2006, York, UKGoogle Scholar
  35. 35.
    Wolters DA, Washburn MP, Yates JR (2001) Anal Chem 73:5683–5690CrossRefGoogle Scholar
  36. 36.
    Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K (2004) Anal Chem 76:1273–1281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Australian Centre for Research on Separation Science (ACROSS), School of ChemistryUniversity of TasmaniaHobartAustralia

Personalised recommendations