Skip to main content

Advertisement

Log in

Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent applications of scanning electrochemical microscopy (SECM) to studies of single biological cells are reviewed. This scanning probe microscopic technique allows the imaging of an individual cell on the basis of not only its surface topography but also such cellular activities as photosynthesis, respiration, electron transfer, single vesicular exocytosis and membrane transport. The operational principles of SECM are also introduced in the context of these biological applications. Recent progress in techniques for high-resolution SECM imaging are also reviewed. Future directions, such as single-channel detection by SECM, high-resolution imaging with nanometer-sized probes, and combined SECM techniques for multidimensional imaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–e
Fig. 3
Fig. 4a,b
Fig. 5 a–c
Fig. 6
Fig. 7a,b
Fig. 8
Fig. 9
Fig. 10
Fig. 11a-c
Fig. 12
Fig. 13a,b
Fig. 14
Fig. 15a–c
Fig. 16a,b
Fig. 17a,b

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cannon DM, Winograd N, Ewing AG (2000) Annu Rev Biophys Biomolec Struct 29:239–263

    CAS  Google Scholar 

  2. Brehm-Stecher BF, Johnson EA (2004) Microbiol Mol Biol Rev 68:538–559

    CAS  Google Scholar 

  3. Rubin MA (2002) Science 296:1329–1330

    CAS  Google Scholar 

  4. Todd R, Margolin DH (2002) Trends Mol Med 8:254–257

    CAS  Google Scholar 

  5. Durack G, Robinson JP (2000) Emerging tools for single-cell analysis. Wiley, New York

    Google Scholar 

  6. Yotter RA, Lee LA, Wilson DM (2004) IEEE Sensors J 4:395–411

    CAS  Google Scholar 

  7. Yotter RA, Wilson DM (2004) IEEE Sensors J 4:412–429

    CAS  Google Scholar 

  8. Stuart JN, Sweedler JV (2003) Anal Bioanal Chem 375:28–29

    CAS  Google Scholar 

  9. Powell PR, Ewing AG (2005) Anal Bioanal Chem 382:581–591

    CAS  Google Scholar 

  10. Tsien RY (2003) Nat Cell Biol 5:SS16–SS21

    Google Scholar 

  11. Bard AJ, Mirkin MV (eds) (2001) Scanning electrochemical microscopy. Marcel Dekker, New York

    Google Scholar 

  12. Bard AJ, Fan F-RF, Pierce DT, Unwin PR, Wipf DO, Zhou F (1991) Science 254:68–74

    CAS  Google Scholar 

  13. Bard AJ, Denuault G, Lee C, Mandler D, Wipf DO (1990) Acc Chem Res 23:357–363

    CAS  Google Scholar 

  14. Lee C, Kwak J, Bard AJ (1990) Proc Natl Acad Sci USA 87:1740–1743

    CAS  Google Scholar 

  15. Scott ER, White HS, Phipps JB (1993) Anal Chem 65:1537–1545

    CAS  Google Scholar 

  16. Macpherson JV, Beeston MA, Unwin PR, Hughes NP, Littlewood D (1995) Langmuir 11:3959–3963

    CAS  Google Scholar 

  17. Yasukawa T, Kaya T, Matsue T (2000) Electroanalysis 12:653–659

    CAS  Google Scholar 

  18. Berger CEM, Rathod H, Gillespie JI, Horrocks BR, Datta HK (2001) J Bone Miner Res 16:2092–2102

    CAS  Google Scholar 

  19. Holt KB, Bard AJ (2005) Biochemistry 44:13214–13223

    CAS  Google Scholar 

  20. Barker AL, Gonsalves M, Macpherson JV, Slevin CJ, Unwin PR (1999) Anal Chim Acta 385:223–240

    CAS  Google Scholar 

  21. Amemiya S, Ding Z, Zhou J, Bard AJ (2000) J Electroanal Chem 483:7–17

    CAS  Google Scholar 

  22. Liu B, Mirkin MV (2001) Anal Chem 73:670A–677A

    CAS  Google Scholar 

  23. Wightman RM (2006) Science 311:1570–1574

    CAS  Google Scholar 

  24. Bard AJ, Li X, Zhan W (2006) Biosens Bioelectron (in press)

  25. Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Anal Chem 61:132–138

    CAS  Google Scholar 

  26. Fernandez JL, Bard AJ (2003) Anal Chem 75:2967–2974

    CAS  Google Scholar 

  27. Xiong H, Gross DA, Guo J, Amemiya S (2006) Anal Chem 78:1946–1957

    CAS  Google Scholar 

  28. Kwak J, Bard AJ (1989) Anal Chem 61:1221–1227

    CAS  Google Scholar 

  29. Bard AJ, Mirkin MV, Unwin PR, Wipf DO (1992) J Phys Chem 96:1861–1868

    CAS  Google Scholar 

  30. Wei C, Bard AJ, Mirkin MV (1995) J Phys Chem 99:16033–16042

    CAS  Google Scholar 

  31. Liu B, Rotenberg SA, Mirkin MV (2000) Proc Natl Acad Sci USA 97:9855–9860

    CAS  Google Scholar 

  32. Yamada H, Matsue T, Uchida I (1991) Biochem Biophys Res Commun 180:1330–1334

    CAS  Google Scholar 

  33. Barker AL, Macpherson JV, Slevin CJ, Unwin PR (1998) J Phys Chem B 102:1586–1598

    CAS  Google Scholar 

  34. Barker AL, Unwin PR (2001) J Phys Chem B 105:12019–12031

    CAS  Google Scholar 

  35. Engstrom RC, Pharr CM (1989) Anal Chem 61:1099A–1104A

    CAS  Google Scholar 

  36. Martin RD, Unwin PR (1998) Anal Chem 70:276–284

    CAS  Google Scholar 

  37. Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Tóth K (1993) Anal Chem 65:1213–1224

    CAS  Google Scholar 

  38. Horrocks BR, Schmidtke D, Heller A, Bard AJ (1993) Anal Chem 65:3605–3614

    CAS  Google Scholar 

  39. Fan F-RF (2001) In: Bard AJ, Mirkin MV (eds) Scanning electrochemical microscopy. Marcel Dekker, New York, pp 111–143

    Google Scholar 

  40. Kwak J, Bard AJ (1989) Anal Chem 61:1794–1799

    CAS  Google Scholar 

  41. Bauermann LP, Schuhmann W, Schulte A (2004) Phys Chem Chem Phys 6:4003–4008

    Google Scholar 

  42. Wipf DO, Bard AJ, Tallman DE (1993) Anal Chem 65:1373–1377

    CAS  Google Scholar 

  43. Fan F-RF, Bard AJ (1999) Proc Natl Acad Soci USA 96:14222–14227

    CAS  Google Scholar 

  44. Wipf DO, Bard AJ (1992) Anal Chem 64:1362–1367

    CAS  Google Scholar 

  45. Borgwarth K, Ebling DG, Heinze J (1994) Ber Bunsen Ges Phys Chem 98:1317–1321

    Google Scholar 

  46. Alpuche-Aviles MA, Wipf DO (2001) Anal Chem 73:4873–4881

    CAS  Google Scholar 

  47. Wei C, Bard AJ, Nagy G, Tóth K (1995) Anal Chem 67:1346–1356

    CAS  Google Scholar 

  48. Kashyap R, Gratzl M (1999) Anal Chem 71:2814–2820

    CAS  Google Scholar 

  49. Baranski AS, Diakowski PM (2004) J Solid State Electrochem 8:683–692

    CAS  Google Scholar 

  50. LeSuer RJ, Fan FRF, Bard AJ (2004) Anal Chem 76:6894–6901

    CAS  Google Scholar 

  51. Katemann BB, Schulte A, Calvo EJ, Koudelka-Hep M, Schuhmann W (2002) Electrochem Commun 4:134–138

    CAS  Google Scholar 

  52. Etienne M, Schulte A, Schuhmann W (2004) Electrochem Commun 6:288–293

    CAS  Google Scholar 

  53. Gabrielli C, Huet F, Keddam M, Rousseau P, Vivier V (2004) J Phys Chem B 108:11620–11626

    CAS  Google Scholar 

  54. Gabrielli C, Ostermann E, Perrot H, Vivier V, Beitone L, Mace C (2005) Electrochem Commun 7:962–968

    CAS  Google Scholar 

  55. Ervin EN, White HS, Baker LA (2005) Anal Chem 77:5564–5569

    CAS  Google Scholar 

  56. Dunn RC (1999) Chem Rev 99:2891–2927

    CAS  Google Scholar 

  57. Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484–2486

    CAS  Google Scholar 

  58. Karrai K, Grober RD (1995) Appl Phys Lett 66:1842–1844

    CAS  Google Scholar 

  59. Ludwig M, Kranz C, Schuhmann W, Gaub HE (1995) Rev Sci Instrum 66:2857–2860

    CAS  Google Scholar 

  60. Kranz C, Gaub HE, Schuhmann W (1996) Adv Mater 8:634–637

    CAS  Google Scholar 

  61. Hengstenberg A, Kranz C, Schuhmann W (2000) Chem Eur J 6:1547–1554

    CAS  Google Scholar 

  62. James PJ, Garfias-Mesias LF, Moyer PJ, Smyrl WH (1998) J Electrochem Soc 145:L64–L66

    CAS  Google Scholar 

  63. Büchler M, Kelley SC, Smyrl WH (2000) Electrochem Solid State Lett 3:35–38

    Google Scholar 

  64. Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ (2001) Anal Chem 73:2153–2156

    CAS  Google Scholar 

  65. Lee Y, Ding Z, Bard AJ (2002) Anal Chem 74:3634–3643

    CAS  Google Scholar 

  66. Oyamatsu D, Hirano Y, Kanaya N, Mae Y, Nishizawa M, Matsue T (2003) Bioelectrochem Bioenerg 60:115–121

    CAS  Google Scholar 

  67. Yamada H, Fukumoto H, Yokoyama T, Koike T (2005) Anal Chem 77:1785–1790

    CAS  Google Scholar 

  68. Katemann BB, Schulte A, Schuhmann W (2003) Chem Eur J 9:2025–2033

    CAS  Google Scholar 

  69. Etienne M, Schulte A, Mann S, Jordan G, Dietzel LD, Schuhmann W (2004) Anal Chem 76:3682–3688

    CAS  Google Scholar 

  70. Garay MF, Ufheil J, Borgwarth K, Heinze J (2004) Phys Chem Chem Phys 6:4028–4033

    Google Scholar 

  71. Katemann BB, Schulte A, Schuhmann W (2004) Electroanalysis 16:60–65

    CAS  Google Scholar 

  72. Turyan I, Etienne M, Mandler D, Schuhmann W (2005) Electroanalysis 17:538–542

    CAS  Google Scholar 

  73. Gardner CE, Macpherson JV (2002) Anal Chem 74:576A–584A

    Google Scholar 

  74. Jones CE, Macpherson JV, Barber ZH, Somekh RE, Unwin PR (1999) Electrochem Commun 1:55–60

    CAS  Google Scholar 

  75. Macpherson JV, Unwin PR (2000) Anal Chem 72:276–285

    CAS  Google Scholar 

  76. Macpherson JV, Unwin PR (2001) Anal Chem 73:550–557

    CAS  Google Scholar 

  77. Abbou J, Demaille C, Druet M, Moiroux J (2002) Anal Chem 74:6355–6363

    CAS  Google Scholar 

  78. Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E (2001) Anal Chem 73:2491–2500

    CAS  Google Scholar 

  79. Lugstein A, Bertagnolli E, Kranz C, Kueng A, Mizaikoff B (2002) Appl Phys Lett 81:349–351

    CAS  Google Scholar 

  80. Lugstein A, Bertagnolli E, Kranz C, Mizaikoff B (2002) Surf Interface Anal 33:146–150

    CAS  Google Scholar 

  81. Dobson PS, Weaver JMR, Holder MN, Unwin PR, Macpherson JV (2005) Anal Chem 77:424–434

    CAS  Google Scholar 

  82. Fasching RJ, Tao Y, Prinz FB (2005) Sens Actuators B 108:964–972

    Google Scholar 

  83. Macpherson JV, Jones CE, Barker AL, Unwin PR (2002) Anal Chem 74:1841–1848

    Google Scholar 

  84. Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B (2005) Angew Chem Int Ed Engl 44:3419–3422

    CAS  Google Scholar 

  85. Tsionsky M, Cardon ZG, Bard AJ, Jackson RB (1997) Plant Physiol 113:895–901

    CAS  Google Scholar 

  86. Zhu RK, Macfie SM, Ding ZF (2005) J Exp Bot 56:2831–2838

    CAS  Google Scholar 

  87. Yasukawa T, Kondo Y, Uchida I, Matsue T (1998) Chem Lett 767–768

  88. Kaya T, Torisawa YS, Oyamatsu D, Nishizawa M, Matsue T (2003) Biosens Bioelectron 18:1379–1383

    CAS  Google Scholar 

  89. Shiku H, Torisawa YS, Takagi A, Aoyagi S, Abe H, Hoshi H, Yasukawa T, Matsue T (2005) Sens Actuators B 108:597–602

    Google Scholar 

  90. Horrocks BR, Wittstock G (2001) In: Bard AJ, Mirkin MV (eds) Scanning electrochemical microscopy. Marcel Dekker, New York, pp 445–519

    Google Scholar 

  91. Bath BD, White HS, Scott ER (2001) In: Bard AJ, Mirkin MV (eds) Scanning electrochemical microscopy. Marcel Dekker, New York, pp 343–395

    Google Scholar 

  92. Mirkin MV, Liu B, Rotenberg SA (2002) Methods Enzymol 352:112–122

    Article  CAS  Google Scholar 

  93. Rotenberg SA, Mirkin MV (2004) J Mammary Gland Biol Neoplasia 9:375–382

    Google Scholar 

  94. Liu B, Rotenberg SA, Mirkin MV (2002) Anal Chem 74:6340–6348

    CAS  Google Scholar 

  95. Yasukawa T, Uchida I, Matsue T (1998) Biochim Biophys Acta 1369:152–158

    CAS  Google Scholar 

  96. Feng WJ, Rotenberg SA, Mirkin MV (2003) Anal Chem 75:4148–4154

    CAS  Google Scholar 

  97. Cai C, Liu B, Mirkin MV, Frank HA, Rusling JF (2002) Anal Chem 74:114–119

    CAS  Google Scholar 

  98. Liu B, Cheng W, Rotenberg SA, Mirkin MV (2001) J Electroanal Chem 500:590–597

    CAS  Google Scholar 

  99. Zhou HF, Kasai S, Noda H, Ohya-Nishiguchi H, Shiku H, Matsue T (2003) Bull Chem Soc Jpn 76:1757–1762

    CAS  Google Scholar 

  100. Travis ER, Wightman RM (1998) Annu Rev Biophys Biomolec Struct 27:77–103

    CAS  Google Scholar 

  101. Clark RA, Zerby SE, Ewing AG (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 20. Marcel Dekker, New York, pp 227–294

  102. Troyer KP, Heien M, Venton BJ, Wightman RM (2002) Curr Opin Chem Biol 6:696–703

    CAS  Google Scholar 

  103. Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM (2000) Anal Chem 72:489–496

    CAS  Google Scholar 

  104. Liebetrau JM, Miller HM, Baur JE, Takacs SA, Anupunpisit V, Garris PA, Wipf DO (2003) Anal Chem 75:563–571

    CAS  Google Scholar 

  105. Wei C, Bard AJ (1995) J Electrochem Soc 142:2523–2527

    CAS  Google Scholar 

  106. Takii Y, Takoh K, Nishizawa M, Matsue T (2003) Electrochim Acta 48:3381–3385

    CAS  Google Scholar 

  107. Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE (2005) Anal Chem 77:1111–1117

    CAS  Google Scholar 

  108. Hengstenberg A, Blöchl A, Dietzel ID, Schuhmann W (2001) Angew Chem Int Ed Engl 40:905–908

    CAS  Google Scholar 

  109. Zhan W, Bard AJ (2006) Anal Chem 78:726–733

    CAS  Google Scholar 

  110. Tsionsky M, Zhou J, Amemiya S, Fan F-RF, Bard AJ, Dryfe RAW (1999) Anal Chem 71:4300–4305

    CAS  Google Scholar 

  111. Matsue T, Shiku H, Yamada H, Uchida I (1994) J Phys Chem 98:11001–11003

    CAS  Google Scholar 

  112. Wilburn JP, Wright DW, Cliffel DE (2006) Analyst 131:311–316

    CAS  Google Scholar 

  113. Amemiya S, Bard AJ (2000) Anal Chem 72:4940–4948

    CAS  Google Scholar 

  114. Ammann D (1986) Ion-selective microelectrodes. Springer, Berlin Heidelberg New York

  115. Antonenko YN, Bulychev AA (1991) Biochim Biophys Acta 1070:474–480

    CAS  Google Scholar 

  116. Pohl P, Saparov SM, Borgnia MJ, Agre P (2001) Proc Natl Acad Sci USA 98:9624–9629

    CAS  Google Scholar 

  117. Saparov SM, Pohl P (2004) Proc Natl Acad Sci USA 101:4805–4809

    CAS  Google Scholar 

  118. Mauzeroll J, Bard AJ (2004) Proc Natl Acad Sci USA 101:7862–7867

    CAS  Google Scholar 

  119. Mauzeroll J, Bard AJ, Owhadian O, Monks TJ (2004) Proc Natl Acad Sci USA 101:17582–17587

    CAS  Google Scholar 

  120. Guo J, Amemiya S (2005) Anal Chem 77:2147–2156

    CAS  Google Scholar 

  121. Goldberg MW, Allen TD (1992) J Cell Biol 119:1429–1440

    CAS  Google Scholar 

  122. Moore-Nichols D, Arnott A, Dunn RC (2002) Biophys J 83:1421–1428

    Article  CAS  Google Scholar 

  123. Mirkin MV, Fan F-RF, Bard AJ (1992) Science 257:364–366

    CAS  Google Scholar 

  124. Fan F-RF, Bard AJ (1995) Science 267:871–874

    CAS  Google Scholar 

  125. Boldt F-M, Heinze J, Diez M, Petersen J, Borsch M (2004) Anal Chem 76:3473–3481

    CAS  Google Scholar 

  126. Lee S, Zhang Y, White HS, Harrell CC, Martin CR (2004) Anal Chem 76:6108–6115

    CAS  Google Scholar 

  127. Baltes N, Thouin L, Amatore C, Heinze J (2004) Angew Chem Int Ed Engl 43:1431–1435

    CAS  Google Scholar 

  128. Ufheil J, Heß C, Borgwarth K, Heinze J (2005) Phys Chem Chem Phys 7:3185–3190

    CAS  Google Scholar 

  129. Qiao Y, Chen J, Guo XL, Cantrell D, Ruoff R, Troy J (2005) Nanotechnology 16:1598–1602

    CAS  Google Scholar 

  130. Bard AJ, Fan F-RF (1996) Acc Chem Res 29:572–578

    CAS  Google Scholar 

  131. Ohtsu M (ed) (1998) Near-field nano/atom optics and technology. Springer, Berlin Heidelberg New York

  132. Xiong H, Guo JD, Kurihara K, Amemiya S (2004) Electrochem Commun 6:615–620

    CAS  Google Scholar 

  133. Maruyama K, Ohkawa H, Ogawa S, Ueda A, Niwa O, Suzuki K (2006) Anal Chem 78:1904–1912

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (DBI-0242561) for financial support. This work was also supported by the Research Corporation and the University of Pittsburgh. We also thank Prof. A.J. Bard, Department of Chemistry and Biochemistry, University of Texas at Austin, Prof. J.E. Baur, Department of Chemistry, Illinois State University, Prof. M.V. Mirkin, Department of Chemistry and Biochemistry, Queens Colleges–CUNY, Prof. W.G. Schuhmann, Analytical Chemistry, Elektroanalytik & Sensorik, Ruhr-Universität Bochum, and Prof. P.R. Unwin, Department of Chemistry, University of Warwick, for their help in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Amemiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amemiya, S., Guo, J., Xiong, H. et al. Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond. Anal Bioanal Chem 386, 458–471 (2006). https://doi.org/10.1007/s00216-006-0510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0510-6

Keywords

Profiles

  1. Hui Xiong