Skip to main content
Log in

Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The isoelectric points of many microbial cells lie within the pH range spanning from 1.5 to 4.5. In this work, we suggest a CIEF method for the separation of cells according to their isoelectric points in the pH range of 2–5. It includes the segmental injection of the sample pulse composed of the segment of the selected simple ampholytes, the segment of the bioanalytes and the segment of carrier ampholytes into fused silica capillaries dynamically modified by poly(ethylene glycole). This polymer dissolved in the catholyte, in the anolyte and in the injected sample pulse was used for a prevention of the bioanalyte adsorption on the capillary surface and for the reduction of the electroosmotic flow. Between each focusing run, the capillaries were washed with the mixture of acetone/ethanol to achieve the reproducible and efficient CIEF. In order to trace of pH gradients, low-molecular-mass pI markers were used. The mixed cultures of microorganisms, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Candida glabrata, Candida tropicalis, CCM 8223, Proteus vulgaris, Klebsiela pneumoniae, Staphylococcus aureus CCM 3953, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224 and Staphylococcus epidermidis CCM 4418, were focused and separated by the CIEF method suggested here. This CIEF method enables the separation and detection of the microbes from the mixed cultures within several minutes. The minimum detectable number of microbial cells was less than 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

L-aspartic acid

c NaOH, Ca :

Concentration of NaOH in the catholyte solution (mM)

c PEG, CaAn :

Concentration of PEG 4000 in the catholyte and in the anolyte solutions [% (wt/vol)]

c PEG, inj :

Concentration of PEG 4000 in the spacer or sample segment [% (wt/vol)]

DSS:

Dilution of the stock solution of the spacer

Glu:

Glutamic acid

Δh :

Height difference of the reservoirs at the siphoning injection

MAA:

4-morpholinyl acetic acid

Nic:

Nicotinic acid

PSS:

Physiological saline solution

t :

Migration time (min)

t 4.9 :

Migration time of the pI marker zone 4.9 (min)

Δt :

Difference between the migration time of the zones of p

TAPSO:

N-[tris-(hydroxymethyl)-methyl]-3-amino-2-hydroxy-propanesulfonic acid

t inj :

Injection time of the sample pulse components into the capillary (s)

References

  1. Harden VP, Harris JO (1953) J Bacteriol 65:198–202

    PubMed  CAS  Google Scholar 

  2. Jucker BA, Harms H, Zehnder AJB (1996) J Bacteriol 178:5472–5479

    PubMed  CAS  Google Scholar 

  3. Rijnaarts HMH, Norde W, Lyklema J, Zehnder AJB (1995) J Colloids Surf BBiointerfaces 4:191–197

    Article  CAS  Google Scholar 

  4. Van der Wal A, Norde W, Zehnder AJB, Lyklema (1997) J Colloids Surf B Biointerfaces 9:81–100

    Article  Google Scholar 

  5. Ritvo G, Dassa O, Kochba MA (2003) Aquaculture 218:379–386

    Article  Google Scholar 

  6. Horká M, Planeta J, Růžička F, Šlais K (2003) Electrophoresis 24:1383–1390

    Article  PubMed  Google Scholar 

  7. Horká M, Růžička F, Horký J, Holá V, Šlais K J (2006) Chromatogr. B (in press)

  8. Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Anal Chem 71:5465–5469

    Article  PubMed  CAS  Google Scholar 

  9. Jaspers E, Overmann J (1997) J Appl Environ Microbiol 63:3176–3181

    CAS  Google Scholar 

  10. Kenndler E, Blaas D (2001) TrAC 20:543–551

    CAS  Google Scholar 

  11. Desai MJ, Armstrong DW (2003) Microbiol Mol Biol Rew 67:38–51

    Article  CAS  Google Scholar 

  12. Moses N, Rouxhet PG (1987) J Microbiol Methods 6:99–112

    Article  Google Scholar 

  13. Righetti PG, Bossi A (1998) Anal Chim Acta 372:1–19

    Article  CAS  Google Scholar 

  14. Conti M, Gelfi C, Righetti PG (1995) Electrophoresis 16:1485–1491

    Article  PubMed  CAS  Google Scholar 

  15. Conti M, Gelfi C, Bianchi-Bosisio A, Righetti PG (1996) Electrophoresis 17:1590–1596

    Article  PubMed  CAS  Google Scholar 

  16. Mohan D, Lee CS (2002) J Chromatogr A 979:271–276

    Article  PubMed  CAS  Google Scholar 

  17. Horká M, Willimann T, Blum M, Nording P, Friedl Z, Šlais K (2001) J Chromator A 916:65–71

    Article  Google Scholar 

  18. Wehr T, Rodriguez-Diáz R, Zhu M (2001) Chromatographia 53:S45–S58

    Google Scholar 

  19. Righetti PG, Caravaggio T (1976) J Chromatogr 127:1–28

    Article  PubMed  CAS  Google Scholar 

  20. Lalljie SPD, Sandra P (1995) Chromatographia 40:519–526

    Article  CAS  Google Scholar 

  21. Rodriguez-Diaz R, Wehr T, Zhu M (1997) Electrophoresis 18:2134–2144

    Article  PubMed  CAS  Google Scholar 

  22. Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher J. (2003) Microbiology 149:3239–3246

    Article  PubMed  CAS  Google Scholar 

  23. Girod M, Armstrong DW (2002) Electrophoresis 23:2048–2056

    Article  PubMed  CAS  Google Scholar 

  24. Shimura K (2002) Electrophoresis 23:3847–3857

    Article  PubMed  CAS  Google Scholar 

  25. Righetti PG (2004) J Chromatogr A 1037:491–499

    Article  PubMed  CAS  Google Scholar 

  26. Kilár F (2003) Electrophoresis 24:3908–3916

    Article  PubMed  CAS  Google Scholar 

  27. Šlais K, Horká M, Nováčková J, Friedl Z (2002) Electrophoresis 23:1682–1688

    Article  PubMed  Google Scholar 

  28. Razatos A, Org YL, Boulay F, Elbert DL, Hubell JA, Sharma MM, Georgiou G (2000) Langmuir 16:9155–9158

    Article  CAS  Google Scholar 

  29. Kaper HJ, Busscher HJ, Norde W (2003) J Biomater Sci Polymer Edn 14:313–324

    Article  CAS  Google Scholar 

  30. Preisler J, Yeung ES (1996) Anal Chem 68:2885–2889

    Article  CAS  Google Scholar 

  31. Kilár F, Végváry Á, Mód A (1998) J Chromatogr A 813:349–360

    Article  PubMed  Google Scholar 

  32. Zhang CX, Xiang F, Pasa-Tolic L, Anderson GA, Veenstra TD, Smith RD (2000) Anal Chem 72:1462–1468

    Article  PubMed  CAS  Google Scholar 

  33. Št’astná M, Trávníček M, Šlais K (2005) Electrophoresis 26:53–59

    Article  PubMed  CAS  Google Scholar 

  34. Hirokawa T, Nishino M, Aoki N, Sawamoto YKTY, Akiyama J-I (1983) J Chromatogr A 271:D1–D106

    Article  CAS  Google Scholar 

  35. Acevedo F (1991) J Chromatogr A 545:391–396

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant Agency of the Academy of Sciences of the Czech republic No. A4031302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Horká.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horká, M., Růžička, F., Holá, V. et al. Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem 385, 840–846 (2006). https://doi.org/10.1007/s00216-006-0508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0508-0

Keywords

Navigation