Skip to main content
Log in

ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are a group of organic pollutants that are persistent when released into the environment. Among the metabolites of PCBs, dihydroxylated PCBs are also considered as toxic compounds. Various studies have shown that dihydroxylated PCBs affect the reproductive, immune, nervous, and endocrine systems. Detection of these chemicals in environmental and biological samples could provide first-hand information about their levels and lead to a better understanding of their role in toxicity. To that end, we developed a sensing system for the detection of dihydroxylated PCBs based on the clc operon. The Pseudomonas putida clc operon encodes a catabolic pathway for degradation of chlorocatechols, which are major metabolites of a large number of chlorinated compounds. In P. putida, the expression of these genes is regulated by a protein encoded by the gene clcR located upstream from the clcABD genes. We demonstrate here for the first time that dihydroxy PCBs can also induce the clc operon. Our sensing system employs P. putida bacteria harboring a plasmid in which the reporter gene, lacZ, is under the control of the regulatory protein ClcR. Consequently, when exposed to dihydroxy PCBs, the bacteria express β-galactosidase in an amount related to the concentration of the corresponding dihydroxy PCB. Various dihydroxylated PCBs, differing in the number and position of chlorines and in the position of hydroxyls, were tested for their ability to induce expression of β-galactosidase. Detection limits as low as 1×10−6 mol L−1 were obtained for various dihydroxylated PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erickson MD (2001) In: Robertson LW, Hansen LG (eds) PCBs: Recent advances in environmental toxicology and health effects. The University of Kentucky Press, Lexington, KY, pp XI–XXX

  2. Krummel EM, Macdonald RW, Kimpe LE, Gregory-Eaves I, Demers MJ, Smol JP, Finney B, Blais JM (2003) Nature 425:255–256

    Article  CAS  Google Scholar 

  3. Fields S (2005) Environ Health Perspect 113:A164–A173

    Article  Google Scholar 

  4. Schantz SL (2005) Environ Health Perspect 113:A148–A149

    Google Scholar 

  5. Bzdusek PA, Christensen ER, Lee CM, Pakdeesusuk U, Freedman DL (2006) Environ Sci Technol 40:109–119

    Article  CAS  Google Scholar 

  6. Bzdusek PA, Lu J, Christensen ER (2006) Environ Sci Technol 40:120–129

    Article  CAS  Google Scholar 

  7. Gouin T, Harner T, Blanchard P, Mackay D (2005) Environ Sci Technol 39:9115–9122

    Article  CAS  Google Scholar 

  8. Jaward FM, DiGuardo A, Nizzetto L, Cassani C, Raffaele F, Ferretti R, Jones KC (2005) Environ Sci Technol 39:3455–3463

    Article  CAS  Google Scholar 

  9. Watanabe MX, Iwata H, Watanabe M, Tanabe S, Subramanian A, Yoneda K, Hashimoto T (2005) Environ Sci Technol 39:4421–4430

    Article  CAS  Google Scholar 

  10. Shcherbatykh I, Huang X, Lessner L, Carpenter DO (2005) Environ Health 4:18

    Article  Google Scholar 

  11. Le Boeuf BJ, Giesy JP, Kannan K, Kajiwara N, Tanabe S, Debier C (2002) BMC Ecol 2:11

    Article  Google Scholar 

  12. De Vos S, Maervoet J, Schepens P, De Schrijver R (2003) Chemosphere 51:7–11

    Article  Google Scholar 

  13. Mayes BA, McConnell EE, Neal BH, Brunner MJ, Hamilton SB, Sullivan TM, Peters AC, Ryan MJ, Toft JD, Singer AW, Brown JF, Jr., Menton RG, Moore JA (1998) Toxicol Sci 41:62–76

    CAS  Google Scholar 

  14. Faroon O, Jones D, de Rosa C (2001) Toxicol Ind Health 16:305–333

    Article  CAS  Google Scholar 

  15. ATSDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry, United States Department of Health and Human Services, Public Health Service, Atlanta, GA

    Google Scholar 

  16. Aoki Y (2001) Environ Res 86:2–11

    Article  CAS  Google Scholar 

  17. Safe S, Hutzinger O, Jones D (1975) J Agric Food Chem 23:851–853

    Article  CAS  Google Scholar 

  18. Matsusue K, Ariyoshi N, Oguri K, Koga N, Yoshimura H (1996) Chemosphere 32:517–523

    Article  CAS  Google Scholar 

  19. Wolkers J, Burkow IC, Lydersen C, Dahle S, Monshouwer M, Witkamp RF (1998) Sci Total Environ 216:1–11

    Article  CAS  Google Scholar 

  20. White RD, Shea D, Schlezinger JJ, Hahn ME, Stegeman JJ (2000) Comp Biochem Physiol C Toxicol Pharmacol 126:267–284

    CAS  Google Scholar 

  21. McLean MR, Bauer U, Amaro AR, Robertson LW (1996) Chem Res Toxicol 9:158–164

    Article  CAS  Google Scholar 

  22. Garner CE, Burka LT, Etheridge AE, Matthews HB (2000) Toxicol Appl Pharmacol 162:115–123

    Article  CAS  Google Scholar 

  23. Garner CE, Jefferson WN, Burka LT, Matthews HB, Newbold RR (1999) Toxicol Appl Pharmacol 154:188–197

    Article  CAS  Google Scholar 

  24. Arnett CM, Parales JV, Haddock JD (2000) Appl Environ Microbiol 66:2928–2933

    Article  CAS  Google Scholar 

  25. Furukawa K, Suenaga H, Goto M (2004) J Bacteriol 186:5189–5196

    Article  CAS  Google Scholar 

  26. Pieper DH (2005) Appl Microbiol Biotechnol 67:170–191

    Article  CAS  Google Scholar 

  27. Bruhlmann F, Chen W (1999) FEMS Microbiol Lett 179:203–208

    Article  CAS  Google Scholar 

  28. Haraguchi K, Kato Y, Koga N, Degawa M (2004) Chem Res Toxicol 17:1684–1691

    Article  CAS  Google Scholar 

  29. Dai S, Vaillancourt FH, Maaroufi H, Drouin NM, Neau DB, Snieckus V, Bolin JT, Eltis LD (2002) Nat Struct Biol 12:934–939

    Article  CAS  Google Scholar 

  30. Machala M, Blaha L, Lehmler HJ, Pliskova M, Majkova Z, Kapplova P, Sovadinova I, Vondracek J, Malmberg T, Robertson LW (2004) Chem Res Toxicol 17:340–347

    Article  CAS  Google Scholar 

  31. Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) Environ Microbiol 6:842–850

    Article  CAS  Google Scholar 

  32. Sharma R, Kodavanti PRS (2002) Toxicol Appl Pharm 178:127–136

    Article  CAS  Google Scholar 

  33. Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, Kuroki H, Fujimoto N (2005) Toxicology 208:377–387

    Article  CAS  Google Scholar 

  34. Srinivasan A, Lehmler H-J, Robertson LW, Ludewig G (2001) Toxicol Sci 60:92–102

    Article  CAS  Google Scholar 

  35. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Chem Res Toxicol 13:135–160

    Article  CAS  Google Scholar 

  36. Ahmed FE (2003) Trends Anal Chem 22:170–185

    Article  CAS  Google Scholar 

  37. Jansson B, Jensen S, Olsson M, Renberg L, Sundstrom G, Vaz R (1975) Ambio 4:93–97

    CAS  Google Scholar 

  38. Li C-S, Wu K-Y, Chang-Chien G-P, Chou C-C (2005) Environ Sci Technol 39:2455–2460

    Article  CAS  Google Scholar 

  39. Tomy GT, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M (2004) Environ Sci Technol 38:2298–2303

    Article  CAS  Google Scholar 

  40. Doi AM, Lou Z, Holmes E, Venugopal CS, Nyagode B, James MO, Kleinow KM (2006) Aquat Toxicol 77:33–42

    Article  CAS  Google Scholar 

  41. Seeger M, Zielinski M, Timmis KN, Hofer B (1999) Appl Environ Microbiol 65(8):3614–3621

    CAS  Google Scholar 

  42. Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S (2000) Anal Chem 72:2423–2427

    Article  CAS  Google Scholar 

  43. Bauer U, Amaro AR, Robertson LW (1995) Chem Res Toxicol 8:92–95

    Article  CAS  Google Scholar 

  44. McFall SM, Parsek MR, Chakrabarty AM (1997) J Bacteriol 179:3655–3663

    CAS  Google Scholar 

  45. McFall SM, Chugani SA, Chakrabarty AM (1998) Gene 223:257–267

    Article  CAS  Google Scholar 

  46. Bronstein I, Martin CS, Fortin JJ, Olesen CE, Voyta JC (1996) Clin Chem 42:1542–1546

    CAS  Google Scholar 

  47. Jain VK, Magrath IT (1991) Anal Biochem 199:119–124

    Article  CAS  Google Scholar 

  48. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Environ Sci Technol 37:4743–4750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project described was supported by grant number P42 ES 07380 from the National Institute of Environmental Health Sciences (NIEHS), NIH and by grant number CHE-9820808 from the National Science Foundation. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH. We also thank Dr. A. M. Chakrabarty for supplying the pSMM50R-B′ plasmid and the PRS4020 strain. JF thanks the National Science Foundation for a Predoctoral Fellowship and for a NSF-IGERT Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Electronic supplementary materials

Below is the link to the electronic supplementary materials.

Supplement 1

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feliciano, J., Xu, S., Guan, X. et al. ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls. Anal Bioanal Chem 385, 807–813 (2006). https://doi.org/10.1007/s00216-006-0505-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0505-3

Keywords

Navigation