Analytical and Bioanalytical Chemistry

, Volume 386, Issue 3, pp 633–638 | Cite as

Interfacial behavior of sulforhodamine 101 at the polarized water/1,2-dichloroethane interface studied by spectroelectrochemical techniques

  • Hirohisa Nagatani
  • Shingo Suzuki
  • David J. Fermín
  • Hubert H. Girault
  • Kiyoharu Nakatani
Original Paper


The transfer mechanism of an amphoteric rhodamine, sulforhodamine 101 (SR101), across the polarized water/1,2-dichloroethane (DCE) interface was investigated using cyclic voltammetry, differential voltfluorometry and potential-modulated fluorescence (PMF) spectroscopy. The voltammetric response for the ion transfer of SR101 monoanion from water to DCE was observed as the diffusion-controlled transfer process. An unusual voltammetric response was found at 0.15 V more negative than the formal transfer potential of SR101 \({\left( {\Delta ^{{\text{W}}}_{{\text{O}}} \phi ^\circ \prime } \right)}\) in the cyclic voltammogram and voltfluorogram. The frequency dependence of the PMF responses confirmed the presence of the adsorption processes at negative potentials. In addition, a further transient adsorption step was uncovered at \(\Delta ^{{\text{W}}}_{{\text{O}}} \phi ^\circ \prime .\)The interfacial mechanism of SR101 is discussed by comparing the results obtained from each technique.


Sulforhodamine 101 Adsorption Liquid/liquid interface Potential modulated fluorescence 



This work was partly supported by a Grant-in-Aid for Scientific Research of Priority Areas (No. 13129202) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). H.N. gratefully acknowledges a Grant-in-Aid for Young Scientists (B) (No. 17750070) from MEXT. The authors are also indebted to Dr. Toshiyuki Osakai of Kobe University for valuable discussions.


  1. 1.
    Watarai H, Teramae N, Sawada S (eds) (2005) Interfacial nanochemistry. Kluwer Academic/Plenum, New YorkGoogle Scholar
  2. 2.
    Volkov AG, (ed) (2003) Interfacial catalysis. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Corn RM, Higgins DA (1994) Chem Rev 94:107CrossRefGoogle Scholar
  4. 4.
    Conboy JC, Richmond GL (1995) Electrochim Acta 40:2881CrossRefGoogle Scholar
  5. 5.
    Piron A, Brevet P-F, Girault HH (2000) J Electroanal Chem 483:29CrossRefGoogle Scholar
  6. 6.
    Nagatani H, Piron A, Brevet P-F, Fermín DJ, Girault HH (2002) Langmuir 18:6647CrossRefGoogle Scholar
  7. 7.
    Fermín DJ, Ding Z, Brevet PF, Girault HH (1998) J Electroanal Chem 447:125CrossRefGoogle Scholar
  8. 8.
    Nagatani H, Iglesias RA, Fermín DJ, Brevet PF, Girault HH (2000) J Phys Chem B 104:6869CrossRefGoogle Scholar
  9. 9.
    Nishi N, Izawa K, Yamamoto M, Kakiuchi T (2001) J Phys Chem B 105:8162CrossRefGoogle Scholar
  10. 10.
    Nakatani K, Nagatani H, Fermín DJ, Girault HH (2002) J Electroanal Chem 518:1CrossRefGoogle Scholar
  11. 11.
    Nagatani H, Fermín DJ, Girault HH (2001) J Phys Chem B 105:9463CrossRefGoogle Scholar
  12. 12.
    Nagatani H, Ozeki T, Osakai T (2006) J Electroanal Chem 588:99CrossRefGoogle Scholar
  13. 13.
    Watarai H, Funaki F (1996) Langmuir 12:6717CrossRefGoogle Scholar
  14. 14.
    Uchida T, Yamaguchi A, Ina T, Teramae N (2000) J Phys Chem B 104:12091CrossRefGoogle Scholar
  15. 15.
    Ishizaka S, Kitamura N (2001) Bull Chem Soc Jpn 74:1983CrossRefGoogle Scholar
  16. 16.
    Tsukahara S, Yamada Y, Watarai H (2000) Langmuir 16:6787CrossRefGoogle Scholar
  17. 17.
    Ishizaka S, Habuchi S, Kim HB, Kitamura N (1999) Anal Chem 71:3382CrossRefGoogle Scholar
  18. 18.
    Ishizaka S, Nakatani K, Habuchi S, Kitamura N (1999) Anal Chem 71:419CrossRefGoogle Scholar
  19. 19.
    Ishizaka S, Kim HB, Kitamura N (2001) Anal Chem 73:2421CrossRefGoogle Scholar
  20. 20.
    Sun Z, Wang E (1989) Chin Sci Bull 34:651Google Scholar
  21. 21.
    Sun Z, Wang E (1988) Electrochim Acta 33:603CrossRefGoogle Scholar
  22. 22.
    Kakiuchi T, Teranishi Y (2001) Electrochem Commun 3:168CrossRefGoogle Scholar
  23. 23.
    Girault HH, Schiffrin DJ (1989) In: Bard AJ (ed) Electroanalytical chemistry, vol 15. Marcel Dekker, New York, pp. 1–141Google Scholar
  24. 24.
    Kakiuchi T, Takasu Y (1994) Anal Chem 66:1853CrossRefGoogle Scholar
  25. 25.
    Ding ZF, Wellington RG, Brevet PF, Girault HH (1997) J Electroanal Chem 420:35CrossRefGoogle Scholar
  26. 26.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New YorkGoogle Scholar
  27. 27.
    Ghasemi J, Niazi A, Kubista M (2005) Spectrochim Acta Part A 62:649CrossRefGoogle Scholar
  28. 28.
    Ilich P, Mishra PK, Macura S, Burghardt TP (1996) Spectrochim Acta Part A 52:1323CrossRefGoogle Scholar
  29. 29.
    Lopez Arbeloa I, Ruiz Ojeda P (1982) Chem Phys Lett 87:556CrossRefGoogle Scholar
  30. 30.
    Nagatani H, Samec Z, Brevet P-F, Fermín DJ, Girault HH (2003) J Phys Chem B 107:786CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of EngineeringNagasaki UniversityBunkyoJapan
  2. 2.Department of Chemistry, Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Departement für Chemie und BiochemieUniversität BernBernSwitzerland
  4. 4.Laboratoire d’Electrochimie Physique et Analytique, Institut de Chimie Molécularie et BioligiqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations