Analytical and Bioanalytical Chemistry

, Volume 385, Issue 4, pp 742–752 | Cite as

Analytical approach for monitoring endocrine-disrupting compounds in urban waste water treatment plants

  • Aldo RodaEmail author
  • Mara Mirasoli
  • Elisa Michelini
  • Maria Magliulo
  • Patrizia Simoni
  • Massimo Guardigli
  • Roberta Curini
  • Manuel Sergi
  • Alessandra Marino
Original Paper


The presence of endocrine-disrupting compounds in influent and effluent water samples from four waste water treatment plants located in Italy was studied. The estrogen-like activity of the water samples was measured using a chemiluminescent recombinant yeast assay which is based on genetically engineered yeast cells that express the human estrogen receptor. This receptor, once activated, elicits the expression of the reporter gene lac-Z and, consequently, the production of β-galactosidase, which is then measured by chemiluminescence. To control and minimize sample matrix effects, an external control based on a modified yeast strain stably expressing β-galactosidase was developed and also used in the assay. Rapid and sensitive chemiluminescent enzyme immunoassays were also developed and validated for the quantification of 17β-estradiol, estrone, and estriol in waste water samples. Results from both methods were compared with a reference high-performance liquid chromatography and electrospray ionization tandem mass spectrometry (HPLC ESI-MS-MS) method developed for the quantification of natural estrogens. The recombinant yeast assay revealed a significant estrogenic activity in the influent samples, ranging from 80 to 400 pmol/L 17β-estradiol equivalents (EEQ), which was reduced by 70–95 % in the effluent samples. The yeast assay also showed a systematic 20–30 % overestimation of estrogenic activity relative to the HPLC ESI-MS-MS method, suggesting the presence of other compounds in the samples with estrogenic activity. The chemiluminescent enzyme immunoassays showed the presence of estrogens in the influent samples (mean concentrations: 350–450 pmol/L for estrone, 5–100 pmol/L for 17β-estradiol, 25–300 pmol/L for estriol), with significantly lower concentrations detected in the respective effluent samples. The waste water treatment was able to reduce natural estrogen concentrations by 40–95 %, although a high variability was observed. The enzyme immunoassay data correlated well with data obtained by the HPLC ESI-MS-MS method. Although the recombinant yeast assay represents a useful tool for a first-level screening of estrogenic activity due to its simplicity and high analytical throughput, sample matrix effects observed in waste water of industrial origin were found to strongly affect the yeast cells response, even when properly corrected for using the external control, thereby limiting its use to urban waste water. Its integration with chemiluminescent enzyme immunoassays would improve its performance by reducing false negative results, thereby enabling its use in extensive studies monitoring for the presence of endocrine-disrupting compounds in urban treatment plant effluents.


Chemiluminescence Endocrine disrupting compounds Enzyme immunoassay Estrogens Recombinant yeast assay Waste water treatment plants 



This work was supported by a grant of MIUR (Italian Ministry of University and Research) and by a grant of ISPELS (Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro). We thank Hera S.P.A (Bologna), AMPS S.p.A (Parma), Comune di Scandicci (Florence), and ACEA S.p.A. (Rome) for providing the WWTP influent and effluent samples.


  1. 1.
    Colburn T, vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378–384CrossRefGoogle Scholar
  2. 2.
    Crews D, Willingham E, Skipper JK (2000) Q Rev Biol 75:243–260CrossRefGoogle Scholar
  3. 3.
    Brevini TA, Zanetto SB, Cillo F (2005) Curr Drug Targets Immune Endocr Metabol Disord 5:1–10CrossRefGoogle Scholar
  4. 4.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  5. 5.
    Céspedes R, Petrovic M, Raldúa D, Saura U, Piña B, Lacorte S, Viana P, Barceló D (2004) Anal Bioanal Chem 378:697–708CrossRefGoogle Scholar
  6. 6.
    Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Environ Sci Technol 11:1549–1558CrossRefGoogle Scholar
  7. 7.
    Tanaka H, Yakou Y, Takahashi A, Higashitani T, Komori K (2001) Water Sci Technol 43:125–132Google Scholar
  8. 8.
    Snyder SA, Villeneuve DL, Snyder EM, Giesy JP (2001) Environ Sci Technol 35:3620–3625CrossRefGoogle Scholar
  9. 9.
    Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbühler A, Marazuela MD, Peter A, Schönenberger R, Vögeli AC, Suter MJF, Eggen RIL (2004) Anal Bioanal Chem 378:688–696CrossRefGoogle Scholar
  10. 10.
    Nakada N, Nyunoya H, Nakamura M, Hara A, Iguchi T, Takada H (2004) Environ Toxicol Chem 23:2807–2815CrossRefGoogle Scholar
  11. 11.
    García-Reyero N, Grau E, Castillo M, López de Alda MJ, Barceló D, Piña B (2001) Environ Toxicol Chem 20:1152–1158CrossRefGoogle Scholar
  12. 12.
    Pasini P, Gentilomi G, Guardigli M, Baraldini M, Musiani M, Roda A (2001). In: Case JF, Herring PJ, Robison BH, Haddock SHD, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence 2000. World Scientific, Singapore, pp 357–360Google Scholar
  13. 13.
    Michelini E, Leskinen P, Virta M, Karp M, Roda A (2005) Biosens Bioelectron 20:2261–2267CrossRefGoogle Scholar
  14. 14.
    Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Environ Sci Technol 34:5059–5066CrossRefGoogle Scholar
  15. 15.
    López de Alda MJ, Barceló D (2001) Fresenius J Anal Chem 371:437–447CrossRefGoogle Scholar
  16. 16.
    Van Emon JM (2001) J AOAC Int 84:125–133Google Scholar
  17. 17.
    Roda A, Bacigalupo MA, Ius A, Minutello A (1991) Environ Technol 12:1–9Google Scholar
  18. 18.
    Roda A, Pistillo A, Ius A, Armanino C, Baraldini M (1994) Anal Chim Acta 298:53–64CrossRefGoogle Scholar
  19. 19.
    Petrovic M, Eljarrat E, López de Alda MJ, Barceló D (2004) Anal Bioanal Chem 378:549–562CrossRefGoogle Scholar
  20. 20.
    Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Environ Sci Technol 32:1559–1565CrossRefGoogle Scholar
  21. 21.
    Coille I, Reder S, Bucher S, Gauglitz G (2002) Biomol Eng 18:273–280CrossRefGoogle Scholar
  22. 22.
    Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, Goda Y, Fujimoto S, Matsunaga T (2004) J Biotechnol 108:153–159CrossRefGoogle Scholar
  23. 23.
    Majima K, Fukui T, Yuan J, Wang G, Matsumoto K (2002) Anal Sci 18:869–874CrossRefGoogle Scholar
  24. 24.
    Zhao L, Lin JM (2005) J Biotechnol 118:177–186CrossRefGoogle Scholar
  25. 25.
    Valentini F, Compagnone D, Gentili A, Palleschi G (2002) Analyst 127:1333–1337CrossRefGoogle Scholar
  26. 26.
    Hanselman TA, Graetz DA, Wilkie AC (2004) J Environ Qual 33:1919–1923CrossRefGoogle Scholar
  27. 27.
    Shore LS, Gurevitz M, Shemesh M (1993) Bull Environ Contam Toxicol 51:361–366CrossRefGoogle Scholar
  28. 28.
    Routledge EJ, Sumpter JP (1996) Environ Toxicol Chem 15:241–248CrossRefGoogle Scholar
  29. 29.
    Sambrook EF, Fristch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  30. 30.
    Erlanger BF, Borek F, Beiser SM, Lieberman S (1957) J Biol Chem 228:713–727Google Scholar
  31. 31.
    Roda A, Girotti S, Lodi S, Preti S (1984) Talanta 31:895–900CrossRefGoogle Scholar
  32. 32.
    Mirasoli M, Feliciano J, Michelini E, Daunert S, Roda A (2002) Anal Chem 74:5948–5953CrossRefGoogle Scholar
  33. 33.
    Murk AJ, Legler J, van Lipzig MMH, Meerman JHN, Belfroid AC, Spenkelink A, van der Burg B, Rijs GBJ, Vethaak D (2002) Environ Toxicol Chem 21:16–23CrossRefGoogle Scholar
  34. 34.
    Witters HE, Vangenechten C, Berckmans P (2001) Water Sci Technol 43:117–123Google Scholar
  35. 35.
    D’Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Sci Total Environ 302:199–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aldo Roda
    • 1
    Email author
  • Mara Mirasoli
    • 1
  • Elisa Michelini
    • 1
  • Maria Magliulo
    • 1
  • Patrizia Simoni
    • 2
  • Massimo Guardigli
    • 1
  • Roberta Curini
    • 3
  • Manuel Sergi
    • 3
  • Alessandra Marino
    • 4
  1. 1.Analytical and Bioanalytical Chemistry Laboratory, Department of Pharmaceutical SciencesUniversity of BolognaBolognaItaly
  2. 2.Department of Internal Medicine and GastroenterologyUniversity of BolognaBolognaItaly
  3. 3.Department of Chemistry‘La Sapienza’ UniversityRomaItaly
  4. 4.ISPESL/DIPIARomaItaly

Personalised recommendations