Skip to main content
Log in

Longitudinal diffusion behavior of hemicyanine dyes across phospholipid vesicle membranes as studied by second-harmonic generation and fluorescence spectroscopies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The adsorption and longitudinal diffusion behaviors of a series of hemicyanine dyes to phospholipid vesicle membranes were studied by second-harmonic generation (SHG) and fluorescence spectroscopies. It was observed that the longitudinal diffusion of cationic hemicyanine dyes takes place immediately after the initial adsorption of these dyes to the outer surface of the vesicle membrane. In contrast, hardly any amount of a zwitterionic hemicyanine dye with a sulfonate group diffused across the vesicle membrane within the measurement time (<2000 s). Based on the difference in the time-course responses of SHG and fluorescence spectroscopies for all of the hemicyanine dyes tested, we propose that hydration of the sulfonate group is mainly responsible for the low diffusivity of the zwitterionic hemicyanine dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moreaux L, Sandre O, Charpak S, Blanchard-Desce M, Mertz J (2001) Biophys J 80:1568

    PubMed  CAS  Google Scholar 

  2. Schaller RD, Roth C, Raulet DH, Saykally RJ (2000) J Phys Chem B 104:5217

    Article  CAS  Google Scholar 

  3. Campagnola PJ, Wie MD, Lewis A, Loew LM (1999) Biophys J 77:3341

    PubMed  CAS  Google Scholar 

  4. Loew LM, Simpson L, Hassner A, Alexanian V (1979) J Am Chem Soc 101:5439

    Article  CAS  Google Scholar 

  5. Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam

  6. Shen YR (1989) Annu Rev Phys Chem 40:327

    Article  CAS  Google Scholar 

  7. Corn RM, Higgins DA (1994) Chem Rev 94:107

  8. Eisenthal KB (1996) Chem Rev 96:1343

  9. Uchida T, Yamaguchi A, Ina T, Teramae N (2000) J Phys Chem B 104:12091

    Article  CAS  Google Scholar 

  10. Nochi K, Yamaguchi A, Hayashita T, Uchida T, Teramae N (2002) J Phys Chem B 106:9906

    Article  CAS  Google Scholar 

  11. Yamaguchi A, Kato R, Nishizawa S, Teramae N (2003) Chem Lett 32:798

    Article  CAS  Google Scholar 

  12. Wang H, Yan ECY, Borguet E, Eisenthal KB (1996) Chem Phys Lett 259:15

    Article  CAS  Google Scholar 

  13. Salafsky JS, Eisenthal KB (2000) Chem Phys Lett 319:435

    Article  CAS  Google Scholar 

  14. Yan ECY, Eisenthal KB (2000) Biophys J 79:898

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Yan ECY, Eisenthal KB (2001) Biophys J 80:1004

    PubMed  CAS  Google Scholar 

  16. Liu Y, Yan ECY, Zhao X, Eisenthal KB (2001) Langmuir 17:2063

    Article  CAS  Google Scholar 

  17. Pons T, Moreaux L, Mertz J (2002) Phys Rev Lett 89:288104

    Article  PubMed  CAS  Google Scholar 

  18. Hope MJ, Balley MB, Webb G, Cullis PH (1985) Biochim Biophys Acta 812:55

    Article  CAS  Google Scholar 

  19. Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247

    Article  Google Scholar 

  20. Hayashita T, Onodera T, Kato R, Nishizawa S, Teramae N (2000) Chem Commun 9:755

    Article  Google Scholar 

  21. Nishizawa S, Yokobori T, Shioya T, Teramae N (2001) Chem Lett 30:1058

    Article  Google Scholar 

  22. Nandi N, Bhattacharyya K, Bagchi N (2000) Chem Rev 100:2013

    Article  PubMed  CAS  Google Scholar 

  23. Richmond GL (2002) Chem Rev 102:2693

    Article  PubMed  CAS  Google Scholar 

  24. Yamashita T, Amino Y, Yamaguchi A, Teramae N (2005) Chem Lett 34:988

    Article  CAS  Google Scholar 

  25. Lindblom G, Rilfors L, Hauksson JB, Brentel I, Sjölund M, Bergenståhl B (1991) Biochemistry 30:10938

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tsunenobu Onodera and Dr. Hitoshi Kasai for measuring the dynamic light scattering. This work was supported in part by a Grant-in-Aid for Scientific Research (A), No. 17205009 from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Kao Foundation for Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, A., Nakano, M., Nochi, K. et al. Longitudinal diffusion behavior of hemicyanine dyes across phospholipid vesicle membranes as studied by second-harmonic generation and fluorescence spectroscopies. Anal Bioanal Chem 386, 627–632 (2006). https://doi.org/10.1007/s00216-006-0470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0470-x

Keywords

Navigation