Skip to main content

Highly selective micro-sequential injection lab-on-valve (μSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry


A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (μSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)2 chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-μL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Ruzicka J, Hansen EH (1988) Flow injection analysis, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  2. 2.

    Valcárcel M, Luque de Castro MD (1987) Flow injection analysis-principles and applications. Ellis Horwood, Chichester

    Google Scholar 

  3. 3.

    Trojanowicz M (2000) Flow injection analysis: instrumentation and applications. World Scientific, Singapur

    Google Scholar 

  4. 4.

    Miró M, Frenzel W (2004) Microchim Acta 148:1–20

    Article  Google Scholar 

  5. 5.

    Burguera JL, Burguera M (2001) Spectrochim Acta B 56:1801–1829

    Article  Google Scholar 

  6. 6.

    Wang J-H, Hansen EH (2005) Trends Anal Chem 24:1–8

    Article  Google Scholar 

  7. 7.

    Vereda-Alonso E, García de Torres A, Cano-Pavón JM (2001) Talanta 55:219–232

    Article  Google Scholar 

  8. 8.

    Ruzicka J, Marshall GD (1990) Anal Chim Acta 237:329–343

    Article  CAS  Google Scholar 

  9. 9.

    Lenehan CE, Barnett NW, Lewis SW (2002) Analyst 127:997–1020

    Article  CAS  Google Scholar 

  10. 10.

    Hansen EH, Wang J-W (2002) Anal Chim Acta 467:3–12

    Article  CAS  Google Scholar 

  11. 11.

    Economou A (2005) Trends Anal Chem 24:416–425

    Article  CAS  Google Scholar 

  12. 12.

    Ruzicka J (2000) Analyst 125:1053–1060

    Article  CAS  Google Scholar 

  13. 13.

    Camel V (2003) Spectrochim Acta B 58:1177–1233

    Article  Google Scholar 

  14. 14.

    Ruzicka J, Scampavia L (1999) Anal Chem 71:257A–263A

    Article  CAS  Google Scholar 

  15. 15.

    Wang J-H, Hansen EH (2003) Trends Anal Chem 22:225–231

    Article  Google Scholar 

  16. 16.

    Wang J-H, Hansen EH, Miró M (2003) Anal Chim Acta 499:139–147

    Article  CAS  Google Scholar 

  17. 17.

    Schulz CM, Scampavia L, Ruzicka J (2002) Analyst 127:1583–1588

    Article  CAS  Google Scholar 

  18. 18.

    Long X-B, Miró M, Hansen EH (2006) Analyst 131:132–140

    Article  CAS  Google Scholar 

  19. 19.

    Ogata Y, Scampavia L, Ruzicka J, Scott CR, Gelb MH, Turecek F (2002) Anal Chem 74:4702–4708

    Article  CAS  Google Scholar 

  20. 20.

    Long X-B, Hansen EH, Miró M (2005) Talanta 66:1326–1332

    Article  CAS  Google Scholar 

  21. 21.

    Long X-B, Miró M, Hansen EH (2005) Anal Chem 77:6032–6040

    Article  CAS  Google Scholar 

  22. 22.

    Miró M, Jończyk S, Wang J-H, Hansen EH (2003) J Anal Atom Spectrom 18:89–98

    Article  Google Scholar 

  23. 23.

    Wang Y, Wang J-H, Fang Z-L (2005) Anal Chem 77:5396–5401

    Article  CAS  Google Scholar 

  24. 24.

    Rao TP, Daniel S, Gladis JM (2004) Trends Anal Chem 23:28–35

    Article  Google Scholar 

  25. 25.

    Fang Z-L (1993) Precipitation. In: Flow injection separation and preconcentration. VCH, Weinheim, pp 169–195

  26. 26.

    Chen H-H, Beauchemin DJ (2001) J Anal Atom Spectrom 16:1356–1363

    Article  CAS  Google Scholar 

  27. 27.

    Yan X-P, Kerrich R, Hendry MJ (1999) J Anal Atom Spectrom 14:215–221

    Article  CAS  Google Scholar 

  28. 28.

    Zhuang Z-X, Wang X-R, Yang P-Y, Yang C-L, Huang B-L (1994) J Anal Atom Spectrom 9:779–784

    Article  CAS  Google Scholar 

  29. 29.

    Chen ZS, Hiraide M, Kawagushi H (1996) Mikrochim Acta 124:27–34

    Article  CAS  Google Scholar 

  30. 30.

    Kozono S, Takahashi S, Haraguchi H (2002) Anal Bioanal Chem 372:542–548

    Article  CAS  Google Scholar 

  31. 31.

    Ali A, Ye Y-X, Xu G-M, Yin X-F, Zhang T (1999) Microchem J 63:365–373

    Article  CAS  Google Scholar 

  32. 32.

    Väänänen T, Kuronen P, Pehu E (2000) J Chromatogr A 869:301–305

    Article  Google Scholar 

  33. 33.

    Rigol A, Latorre A, Lacorte S, Barceló D (2002) J Chromatogr A 963:265–275

    Article  CAS  Google Scholar 

  34. 34.

    Quintana JB, Carpinteiro J, Rodríguez I, Lorenzo RA, Carro AM, Cela R (2004) J Chromatogr A 1024:177–185

    Article  CAS  Google Scholar 

  35. 35.

    Nielsen SC, Hansen EH (2000) Anal Chim Acta 422:47–62

    Article  CAS  Google Scholar 

  36. 36.

    Miró M, Hansen EH (2006) Trends Anal Chem 25:267–281

    Article  Google Scholar 

  37. 37.

    Noresson B, Hashemi P, Olin Ǻ (1998) Talanta 46:1051–1063

    Article  CAS  Google Scholar 

  38. 38.

    Jiménez MS, Velarte R, Castillo JR (2002) Spectrochim Acta B 57:391–402

    Article  Google Scholar 

  39. 39.

    Ellis LA, Roberts DJ (1998) J Anal Atom Spectrom 13:631–634

    Article  CAS  Google Scholar 

  40. 40.

    Wissiack R, Rosenberg E, Grassenbauer M (2000) J Chromatogr A 896:159–170

    Article  CAS  Google Scholar 

  41. 41.

    Carabias-Martínez R, Rodríguez-Gonzalo E, Herrero-Hernández E, Hernández-Méndez J (2004) Anal Chim Acta 517:71–79

    Article  Google Scholar 

  42. 42.

    Wang J-H, Hansen EH (2001) Anal Chim Acta 435:331–342

    Article  CAS  Google Scholar 

  43. 43.

    Long X-B, Miró M, Hansen EH (2005) J Anal Atom Spectrom 20:1203–1211

    Article  CAS  Google Scholar 

  44. 44.

    Miller JN, Miller JC (2005) Statistics and Chemometrics for Analytical Chemistry, 5th edn. Pearson Education, Harlow, pp 39–40

    Google Scholar 

Download references


Xiangbao Long is grateful for a 3-year Ph.D. stipend granted to him by the Technical University of Denmark. Manuel Miró is indebted to the Spanish Ministry of Education and Science for financial support through the “Ramon y Cajal” research program.

Author information



Corresponding authors

Correspondence to Manuel Miró or Elo Harald Hansen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Long, X., Miró, M., Jensen, R. et al. Highly selective micro-sequential injection lab-on-valve (μSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry. Anal Bioanal Chem 386, 739–748 (2006).

Download citation


  • Brines
  • Nickel
  • Lipophilic/hydrophilic beads
  • Micro-sequential injection lab-on-valve
  • Preconcentration