Skip to main content

Advertisement

Log in

Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes use of a novel glass bead-based immobilized-enzyme micro column for simple and swift on-line protein digestion then peptide separation by reversed-phase HPLC. The inexpensive and easily made immobilized-enzyme micro column was prepared from aminopropyl controlled-pore glass that was reacted first with glutaraldehyde then with trypsin in the presence of phosphate buffer. Tryptic digestion of bovine serum albumin (BSA) was achieved simply by passing pretreated protein solution through the laboratory made immobilized-trypsin column; the tryptic fragments were then separated by reversed-phase HPLC. The peptide separation was found to be identical to separation of a sample which had undergone conventional enzymatic protein digestion in solution. Digestion of BSA by the immobilized-trypsin column decreased with increasing flow rate of the solution through the column, and 1.0 μL min−1 was found to be the optimum flow rate for on-line protein digestion with our system. It was also found that the sample required pretreatment with urea before injection, because of a change in the properties of the protein in the presence of urea, and the immobilized-trypsin column lost its function in the presence of acetonitrile. This on-line proteomics system enables simple and rapid protein digestion and was successfully applied to partially micro two-dimensional (2D) chromatographic separation of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walz T, Grigorieff N (1998) J Struct Biol 121:142–161

    Article  CAS  Google Scholar 

  2. Turner BG, Summers MF (1999) J Mol Biol 285:1–32

    Article  CAS  Google Scholar 

  3. Nägele E, Vollmer M, Hörth P (2003) J Chromatogr A 1009:197–205

    Article  Google Scholar 

  4. Brugière S, Kowalski S, Ferro M, Seigneurin-Berny D, Miras S, Salvi D, Ravanel S, d’Hérin P, Garin J, Bourguignon J, Joyard J, Rolland N (2004) Phytochemistry 65:1693–1707

    Article  Google Scholar 

  5. Williams JG, Tomer KB (2004) J Am Soc Mass Spectrom 15:1333–1340

    Article  CAS  Google Scholar 

  6. Manso MA, Léonil J, Piot M, Gagnaire V (2005) 105:119–129

  7. Amankwa LN, Kuhr WG (1992) Anal Chem 64(14):1610–1613

    Article  CAS  Google Scholar 

  8. Wang C, Oleschuk R, Ouchen F, Li J, Thibault P, Harrison DJ (2000) Rapid Commun Mass Spectrom 14(15):1377–1383

    Article  CAS  Google Scholar 

  9. Sakai-Kato K, Kato M, Toyo’oka T (2003) Anal Chem 75(3):388–393

    Article  CAS  Google Scholar 

  10. Tyan YC, Liao JD, Jong SB, Liao PC, Yang MH, Chang YW, Klauser R, Himmelhaus M, Grunze M (2004) J Biomed Mater Res 71A(1):90–97

    Article  CAS  Google Scholar 

  11. Emmer A, Roeraade J (2005) Anal Chim Acta 542(2):137–143

    Article  CAS  Google Scholar 

  12. Malmsten M, Xing K, Ljunglöf A (1999) J Colloid Interface Sci 220:436–442

    Article  CAS  Google Scholar 

  13. Krogh TN, Berg T, Højrup P (1999) Anal Biochem 274:153–162

    Article  CAS  Google Scholar 

  14. Bonneil E, Waldron KC (2000) Talanta 53:687–699

    Article  CAS  Google Scholar 

  15. Freije JR, Mulder PPMFA, Werkman W, Rieux L, Niederlander HAG, Verpoorte E, Bischoff R (2005) J Proteome Res 4(5):1805–1813

    Article  CAS  Google Scholar 

  16. Jiang Y, Lee CS (2001) J Chromatogr A 924:315–322

    Article  CAS  Google Scholar 

  17. Li Y, Cooper JW, Lee CS (2002) J Chromatogr A 979:214–247

    Article  Google Scholar 

  18. Bengtsson M, Ekström S, Marko-Varga G, Laurell T (2002) Talanta 56:341–353

    Article  CAS  Google Scholar 

  19. Massolini G, Calleri E, Lavecchia A, Loiodice F, Lubda D, Temporini C, Fracchiolla G, Tortorella P, Novellino E, Caccialanza G (2002) Anal Chem 75(3) 535–542

    Article  Google Scholar 

  20. Calleri E, Temporini C, Perani E, Stella C, Rudaz S, Lubda D, Mellerio G, Veuthey JL, Caccialanza G, Massolini G (2004) J Chromatogr A 1045:99–109

    Article  CAS  Google Scholar 

  21. Takeuchi T, Ishii D (1981) J Chromatogr 213:25–32

    Article  CAS  Google Scholar 

  22. Tokyo Kagaku Doujin (1st ed) Encyclopedic Dictionary of Chemistry. Tokyo, p 367b

Download references

Acknowledgements

This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (C), No. 16550071, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Wah Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, L.W., Tomatsu, M. & Takeuchi, T. Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation. Anal Bioanal Chem 386, 614–620 (2006). https://doi.org/10.1007/s00216-006-0458-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0458-6

Keywords

Navigation