Analytical and Bioanalytical Chemistry

, Volume 385, Issue 4, pp 678–685 | Cite as

Progress toward the development of a point-of-care photonic crystal ammonia sensor

  • Kyle W. Kimble
  • Jeremy P. Walker
  • David N. Finegold
  • Sanford A. AsherEmail author
Original Paper


We have developed an ammonia-sensitive material by coupling the Berthelot reaction to our polymerized crystalline colloidal array (PCCA) technology. The material consists of a periodic array of highly charged colloidal particles (110 nm diameter) embedded in a poly(hydroxyethyl acrylate) hydrogel. The particles have a lattice spacing such that they Bragg-diffract visible light. In the Berthelot reaction, ammonia, hypochlorite, and phenol react to produce the dye molecule indophenol blue in an aqueous solution. We use this reaction in our sensor by covalently attaching 3-aminophenol to the hydrogel backbone, which forms cross-links through the Berthelot mechanism. Ammonia reacts with hypochlorite, forming monochloramine, which then reacts with a pendant aminophenol to form a benzoquinone chlorimine. The benzoquinone chlorimine reacts with another pendant aminophenol to form a cross-link. The creation of new cross-links causes the hydrogel to shrink, which reduces the lattice spacing of the embedded colloidal array. This volume change results in a blue-shift in the diffracted light proportional to the concentration of NH3 in the sample. We demonstrate that the NH3 photonic crystal sensing material is capable of quantitative determination of concentrations in the physiological range (50–350 μmol NH3 L−1) in human blood serum.


Sensor Ammonia Point-of-care Polymerized crystalline colloidal array (PCCA) Hydrogels Photonic crystal 



We gratefully acknowledge NIH grants# 1 R01 GM 58821-01 and 2R01 DK 55348-03A1.


  1. 1.
    Huizenga JR, Gips CH, Tangerman A (1996) Ann Clin Biochem 33:23Google Scholar
  2. 2.
    Tietz NW (1995) Clinical laboratory guide to laboratory tests, 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  3. 3.
    Pesce AJ, Kaplan LA (1987) Methods in clinical chemistry. CV Mosby Company, St. LouisGoogle Scholar
  4. 4.
    Hazell AS, Butterworth RF (1999) Exp Biol and Med 222:99CrossRefGoogle Scholar
  5. 5.
    Campion M (2003) Blood ammonia: a critical measurement. BIMDG Bulletin Spring 13Google Scholar
  6. 6.
    Bachmann C (2003) Eur J of Pediatr 162:S29CrossRefGoogle Scholar
  7. 7.
    Mondzac A, Ehrlich GE, Seegmiller JE (1965) J Lab Clin Med 66:526Google Scholar
  8. 8.
    Van Anken HC, Schiphorst ME (1974) A Clin Chim Acta 56:151CrossRefGoogle Scholar
  9. 9.
    Vitros chemistry products AMON slides (2005)
  10. 10.
    Huizenga JR, Tangerman A, Gips CH (1994) Ann Clin Biochem 31:529Google Scholar
  11. 11.
    Mann LT (1963) Anal Chem 35:2179CrossRefGoogle Scholar
  12. 12.
    Reay PF (1985) Anal Chim Acta 176:275CrossRefGoogle Scholar
  13. 13.
    Lau KT, Edwards S, Diamond D (2004) Sens Actuators B 98:12CrossRefGoogle Scholar
  14. 14.
    Daridon et al (2001) Sens Actuators B 76:235CrossRefGoogle Scholar
  15. 15.
    Zellmer S, Katenborn G, Rothe U, Lehnich H, Lasch J, Pauer HD (1999) Anal Biochem 273:163CrossRefGoogle Scholar
  16. 16.
    Berthelot M (1859) Rep Chim Appl I 284Google Scholar
  17. 17.
    Searle PL (1984) Analyst 109:549CrossRefGoogle Scholar
  18. 18.
    Gips CH, Reitsema A (1971) Clin Chem Acta 33:257CrossRefGoogle Scholar
  19. 19.
    Ngo TT, Phan APH, Yam CF, Lenhoff HM (1982) Anal Chem 54:46CrossRefGoogle Scholar
  20. 20.
    Krieger IM, O’Neill FM (1968) J Am Chem Soc 90:3114CrossRefGoogle Scholar
  21. 21.
    Hiltner PA, Krieger IM (1969) J Phys Chem 73:2386CrossRefGoogle Scholar
  22. 22.
    Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881CrossRefGoogle Scholar
  23. 23.
    Carlson RJ, Asher SA (1984) Appl Spec 38:297CrossRefGoogle Scholar
  24. 24.
    Runquist PA, Photinos P, Jagannathan S, Asher SA (1989) J Chem Phys 91:4932CrossRefGoogle Scholar
  25. 25.
    Asher SA, Holtz JH, Liu L, Wu Z (1994) J Am Chem Soc 116:4997CrossRefGoogle Scholar
  26. 26.
    Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Science 274:959CrossRefGoogle Scholar
  27. 27.
    Ito K, Nakamura H, Ise N (1986) J Chem Phys 85:6136CrossRefGoogle Scholar
  28. 28.
    Monovoukas Y, Gast AP (1989) J Colloid Interface Sci 128:533CrossRefGoogle Scholar
  29. 29.
    Okubo T (1988) Acc Chem Res 21:281CrossRefGoogle Scholar
  30. 30.
    Asher SA, U.S. Patents 4,627,689 (1986), 4,632,517 (1986), 5,281,370 (1994), 5,452,123 (1995)Google Scholar
  31. 31.
    Holtz JH, Asher SA (1997) Nature 389:829CrossRefGoogle Scholar
  32. 32.
    Holtz JH, Holtz JS, Munro C, Asher SA (1998) Anal Chem 70:780CrossRefGoogle Scholar
  33. 33.
    Pan G, Kesavamoorthy R, Asher SA (1998) J Am Chem Soc 120:6525CrossRefGoogle Scholar
  34. 34.
    Goponenko AV, Asher SA J Am Chem Soc 127:10753Google Scholar
  35. 35.
    Harfmann RG, Crouch SR (1989) Talanta 36:261CrossRefGoogle Scholar
  36. 36.
    Davies MJ (2005) Biochim Biophys Acta 1703:93Google Scholar
  37. 37.
    Hawkins CL, Pattison DI, Davies MJ (2003) Amino Acids 25:259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kyle W. Kimble
    • 1
  • Jeremy P. Walker
    • 1
  • David N. Finegold
    • 1
  • Sanford A. Asher
    • 1
    Email author
  1. 1.Department of Chemistry, School of Medicine, Chevron Science CenterUniversity of PittsburghPittsburghUSA

Personalised recommendations