Analytical and Bioanalytical Chemistry

, Volume 385, Issue 4, pp 730–736 | Cite as

pH effect on dynamic coating for capillary electrophoresis of DNA

  • Sheng-Bing Yu
  • Ping ZhouEmail author
  • Ai-Rong Feng
  • Xin-Cheng Shen
  • Zhi-Ling Zhang
  • Ji-Ming Hu
Original Paper


A buffer consisting of tris(hydroxymethyl)aminomethane, 2-(N-moropholino)ethanesulfonic acid (Mes) and EDTA with constant ion strength was used to investigate the effect of buffer pH on the dynamic coating behavior of poly(N-isopropylacrylamide) (PNIPAM) for DNA separation. The atomic force microscopy (AFM) image illustrated that PNIPAM in lower-pH buffer was much more efficient in covering a silica wafer than that in higher-pH buffer. The coating performance of PNIPAM was also quantitatively analyzed by Fourier transform IR attenuated total reflectance spectroscopy and by measuring the electroosmotic flow (EOF). These results indicated that the stability of the dynamic coating was dependent on the pH of the sieving matrix and was improved by reducing the pH to the weak-acid range. The lower pH of the sieving buffer may induce the polymer more efficiently to adsorb on the capillary wall to suppress EOF and DNA–capillary wall interaction for DNA separation. The enhanced dynamic coating capacity of PNIPAM in lower-pH buffer may be attributed to the hydrogen bonds between the hydroxyl groups of the silica surface and the oxygen atom of the carbonyl groups of PNIPAM.


Capillary electrophoresis pH Dynamic coating DNA separation Poly-N-isopropylacrylamide 



This research was supported by the Natural Science Foundation of China (grant nos. 20305012 and. 20427002).


  1. 1.
    Bjorheim J, Ekstrom PO (2005) Electrophoresis 26:2520–2530CrossRefPubMedGoogle Scholar
  2. 2.
    Horvath J, Dolník V (2001) Electrophoresis 22:644–655CrossRefPubMedGoogle Scholar
  3. 3.
    Hjertén S (1985) J Chromatogr 347:191–198CrossRefGoogle Scholar
  4. 4.
    Gilges M, Kleemis MH, Schomburg G (1994) Anal Chem 66:2038–2046CrossRefGoogle Scholar
  5. 5.
    Chiari M, Nesi M, Sandoval JE, Pesek JJ (1995) J Chromatogr A 717:1–13CrossRefGoogle Scholar
  6. 6.
    Chiari M, Cretich M, Horvath J (2000) Electrophoresis 21:1521–1526CrossRefPubMedGoogle Scholar
  7. 7.
    Moritani T, Yoon K, Rafailovich M, Chu B (2003) Electrophoresis 24:2764–2771CrossRefPubMedGoogle Scholar
  8. 8.
    Albarghouthi MN, Buchholz BA, Huiberts PJ, Stein TM, Barron AE (2002) Electrophoresis 23:1429–1440CrossRefPubMedGoogle Scholar
  9. 9.
    Chiari M, Cretich M, Damin F, Ceriotti L, Consonni R (2000) Electrophoresis 21:909–916CrossRefPubMedGoogle Scholar
  10. 10.
    Xu F, Baba Y (2004) Electrophoresis 25:2332–2345CrossRefPubMedGoogle Scholar
  11. 11.
    Yongseong K, Yeung ES (1997) J Chromatogr A 781:315–325CrossRefPubMedGoogle Scholar
  12. 12.
    Gao Q, Yeung ES (1998) Anal Chem 70:1382–1388CrossRefPubMedGoogle Scholar
  13. 13.
    Madabushi RS (1998) Electrophoresis 19:224–230CrossRefPubMedGoogle Scholar
  14. 14.
    Ren J, Ulvik A, Refsum H, Ueland PM (1999) Anal Biochem 276:188–194CrossRefPubMedGoogle Scholar
  15. 15.
    Albarghouthi MN, Buchholz BA, Huiberts PJ, Stein TM, Barron AE (2002) Electrophoresis 23:1429–1440CrossRefPubMedGoogle Scholar
  16. 16.
    Barbier V, Buchholz BA, Barron AE, Viovy JL (2002) Electrophoresis 23:1441–1449CrossRefPubMedGoogle Scholar
  17. 17.
    Tian H, Landers JP (2002) Anal Biochem 309:212–223CrossRefPubMedGoogle Scholar
  18. 18.
    Sanders JC, Breadmore MC, Kwork YC, Horskaj KM, Landers JP (2003) Anal Chem 75:986–994CrossRefPubMedGoogle Scholar
  19. 19.
    Doherty EAS, Berglund KD, Buchholz BA, Kourkine IV, Przybycien TM, Tilton RD, Barron AE (2002) Electrophoresis 23:2766–2776CrossRefPubMedGoogle Scholar
  20. 20.
    Katayama H, Ishihama Y, Asakawa N (1998) Anal Chem 70:5272–5277CrossRefPubMedGoogle Scholar
  21. 21.
    Rodriguez I, Li SFY (1999) Anal Chim Acta 383:1–26CrossRefGoogle Scholar
  22. 22.
    Cifuentes A, Díez-Masa JC, Fritz J, Anselmetti D, Bruno AE (1998) Anal Chem 70:3458–3462CrossRefGoogle Scholar
  23. 23.
    Kaupp S, Wätzig H (1999) Electrophoresis 20:2566–2574CrossRefPubMedGoogle Scholar
  24. 24.
    Pullen PE, Pesek JJ, Matyska MT, Frommer J (2000)Anal Chem 72:2571–2757CrossRefGoogle Scholar
  25. 25.
    Wätzig H, Kaupp S, Graf M (2003) Trends Anal Chem 22:588–604CrossRefGoogle Scholar
  26. 26.
    Gurya V, Pacáková V, Tlust’áková M, tulík K, Michálek J (2004) J Sep Sci 27:1121–1129CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang P, Ren J (2004) Anal Chim Acta 507:179–184CrossRefGoogle Scholar
  28. 28.
    Hinda AR, Bhargava SK, Mckinnon A (2001) Adv Colloid Interface Sci 93:91–114CrossRefPubMedGoogle Scholar
  29. 29.
    Schmitt FJ, Müller M (1997) Thin Solid Films 310:138–147CrossRefGoogle Scholar
  30. 30.
    Jing X, Clyde R, Mukesh K, Krishnan C (2002) Biomaterials 23:3609–3616CrossRefPubMedGoogle Scholar
  31. 31.
    Li Y, Neoh KG, Kang ET (2004) Polymer 45:8779–8789CrossRefGoogle Scholar
  32. 32.
    Vigano C, Ruysschaert J M, Goormaghtigh E (2005) Talanta 65:1132–1142CrossRefGoogle Scholar
  33. 33.
    Zhou P, Yu S, Liu Z, Hu J, Deng Y (2005) J Chromatogr A 1083:173–178CrossRefPubMedGoogle Scholar
  34. 34.
    Liang D, Song L, Chen Z, Chu B (2001) J Chromatogr A 931:163–173CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou P, Yan J, Deng Y (2000) Analyst 125:2241–2243CrossRefPubMedGoogle Scholar
  36. 36.
    Brody JR, Kern SE (2004) Anal Biochem 333:1–13CrossRefPubMedGoogle Scholar
  37. 37.
    García-Cañas V, González R, Cifuentes A (2002) J Sep Sci 25:577–583CrossRefGoogle Scholar
  38. 38.
    Digital Instruments (1997) NanoScope command reference manual, version 4.31, revision B. Digital Instruments, Santa BarbaraGoogle Scholar
  39. 39.
    Kuhn R, Hoffstetter-Kuhn S (1993) Capillary electrophoresis: principles and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sheng-Bing Yu
    • 1
  • Ping Zhou
    • 1
    Email author
  • Ai-Rong Feng
    • 1
  • Xin-Cheng Shen
    • 1
  • Zhi-Ling Zhang
    • 1
  • Ji-Ming Hu
    • 1
  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanP. R. China

Personalised recommendations