Skip to main content
Log in

An automatic flow injection analysis procedure for photometric determination of ethanol in red wine without using a chromogenic reagent

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An automatic reagentless photometric procedure for the determination of ethanol in red wine is described. The procedure was based on a falling drop system that was implemented by employing a flow injection analysis manifold. The detection system comprised an infrared LED and a phototransistor. The experimental arrangement was designed to ensure that the wine drop grew between these devices, thus causing a decrease in the intensity of the radiation beam coming from the LED. Since ethanol content affected the size of the wine drop this feature was exploited to develop an analytical procedure for the photometric determination of ethanol in red wine without using a chromogenic reagent. In an attempt to prove the usefulness of the proposed procedure, a set of red wines were analysed. No significant difference between our results and those obtained with a reference method was observed at the 95% confidence level. Other advantages of our method were a linear response ranging from 0.17 up to 5.14 mol L−1 (1.0 up to 30.0%) ethanol (R=0.999); a limit of detection of 0.05 mol L−1 (0.3%) ethanol; a relative standard deviation of 2.5% (n=10) using typical wine sample containing 2.14 mol L−1 (12.5%) ethanol; and a sampling rate of 50 determinations per hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rotariu L, Bala C, Magearu V (2004) Anal Chim Acta 513:119–123

    Article  CAS  Google Scholar 

  2. Liden H, Vijayakumar AR, Gorton L, Marko-Varga G (1998) J Pharm Biomed Anal 17:1111–1128

    Article  CAS  Google Scholar 

  3. Clarkson SP, Ormrod IHL, Sharpe FR (1995) J Inst Brew 101:191–193

    CAS  Google Scholar 

  4. Lazarova G, Genova L, Kostov V (1987) Acta Biotechnol 7:97–99

    Article  CAS  Google Scholar 

  5. Gallignani M, Garrigues S, Delaguardia M (1993) Analyst 118(9):1167–1173

    Article  CAS  Google Scholar 

  6. Santos AS, Freire RS, Kubota LT (2003) J Electroanal Chem 547:135–142

    Article  CAS  Google Scholar 

  7. Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E (2003) Biosens Bioelectron 18:1125–1134

    Article  CAS  Google Scholar 

  8. Akyilmaz E, Dinçkaya E (2005) Biosens Bioelectron 20:1263–1269

    Article  CAS  Google Scholar 

  9. Fernandes EN, Reis BF (2004) J AOAC INT 87:920–926

    CAS  Google Scholar 

  10. Walker T, Morris J, Threlfall R, Main G (2003) J Agr Food Chem 51:1543–1547

    Article  CAS  Google Scholar 

  11. Santos EMG, Couto CMCM, Araujo AN, Montenegro MCBSM, Reis BF (2004) J Braz Chem Soc 15(5):701–707

    Article  CAS  Google Scholar 

  12. Pimenta AM, Araujo AN, Conceicao M, Montenegro BSM, Pasquini C, Rohwedder JJR, Raimundo IM (2004) J Pharm Biomed Anal 36:49–55

    Article  CAS  Google Scholar 

  13. Rodenas-Torralba E, Reis BF, Morales-Rubio A, Delaguardia M (2005) Talanta 66:591–599

    Article  CAS  Google Scholar 

  14. Rocha FRP, Nóbrega JA, Fatibello-Filho O (2001) Green Chemistry 3:216–220

    Article  CAS  Google Scholar 

  15. Liu HH, Dasgupta PK (1996) Trends Anal Chem 15:468–475

    Article  CAS  Google Scholar 

  16. Liu HH, Dasgupta PK (1996) Anal Chem 68:1817–1821

    Article  CAS  Google Scholar 

  17. Zanavaras PD, Zacharis CK, Theodoridis GA, Kalaitzantonakis EA, Voulgaropoulos AN (2005) Anal Chim Acta 547:98–103

    Article  Google Scholar 

  18. Comitre ALD, Reis BF (2005) Talanta 65:846–852

    Article  CAS  Google Scholar 

  19. Young TE, Synovec RE (1996) Talanta 43:889–899

    Article  CAS  Google Scholar 

  20. Bramanti E, Quigley WWC, Sortino C, Beni F, Onora M, Raspi G, Synovec RE (2004) J Chromatogr A 1023:79–91

    Article  CAS  Google Scholar 

  21. Olson NA, Skogerboe KJ, Synovec RE (1998) J Chromatogr A 806:239–250

    Article  CAS  Google Scholar 

  22. Lenghor N, Grudpan K, Jakmunee J, Staggemeier BA, Quigley WWC, Prazen BJ, Christian GD, Ruzicka J, Synovec RE (2003) Talanta 59:1153–1163

    Article  CAS  Google Scholar 

  23. Miller KE, Synovec RE (2000) Anal Chim Acta 412:149–160

    Article  CAS  Google Scholar 

  24. Miller KE, Skogerboe KJ, Synovec RE (1999) Talanta 50:1045–1056

    Article  CAS  Google Scholar 

  25. Martelli PB, Reis BF, Korn M, Rufini IA (1997) J Brazil Chem Soc 8:479–485

    CAS  Google Scholar 

  26. Caputi JA, Winery EG, Winery JG (1995) (eds) Official methods of analysis–wines. AOAC International, Gaithersburg, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaventura F. Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, S.S., Frizzarin, R.M. & Reis, B.F. An automatic flow injection analysis procedure for photometric determination of ethanol in red wine without using a chromogenic reagent. Anal Bioanal Chem 385, 197–202 (2006). https://doi.org/10.1007/s00216-006-0377-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0377-6

Keywords