Analytical and Bioanalytical Chemistry

, Volume 386, Issue 3, pp 532–543 | Cite as

Recent advances in fluorescent probes for the detection of reactive oxygen species



Reactive oxygen species (ROS) have captured the interest of many researchers in the chemical, biological, and medical fields since they are thought to be associated with various pathological conditions. Fluorescent probes for the detection of ROS are promising tools with which to enhance our understanding of the physiological roles of ROS, because they provide spatial and temporal information about target biomolecules in in vivo cellular systems. ROS probes, designed to detect specific ROS with a high selectivity, would be desirable, since it is now becoming clear that each ROS has its own unique physiological activity. However, dihydro-compounds such as 2′,7′-dichlorodihydrofluorescein (DCFH), which have traditionally been used for detecting ROS, tend to react with a wide variety of ROS and are not completely photostable. Some attractive fluorescent probes that exhibit a high degree of selectivity toward specific ROS have recently been reported, and these selective probes are expected to have great potential for elucidating unknown physiological mechanisms associated with their target ROS. This review focuses on the design, detection mechanism, and performance of fluorescent probes for the detection of singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radicals (.OH), or superoxide anion (O2−.), a field in which remarkable progress has been achieved in the last few years.


Fluorescent probe Reactive oxygen species (ROS) Singlet oxygen (1O2Hydrogen peroxide (H2O2Hydroxyl radical (.OH) Superoxide anion (O2−.


  1. 1.
    Halliwell B, Gutteridge JMC (1999) (eds) Free radicals in biology and medicine, 3rd edn. Clarendon, OxfordGoogle Scholar
  2. 2.
    Forman HJ, Fukuto JM, Torres M (2004) Am J Physiol Cell Physiol 287:C246–C256CrossRefGoogle Scholar
  3. 3.
    Esposito F, Ammendola R, Faraonio R, Russo T, Cimino F (2004) Neurochem Res 29:617–628CrossRefGoogle Scholar
  4. 4.
    Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Free Radical Biol Med 28:1456–1462CrossRefGoogle Scholar
  5. 5.
    Bredt DS, Snyder SH (1994) Annu Rev Biochem 63:175–195CrossRefGoogle Scholar
  6. 6.
    Iida Y, Katusic ZS (2000) Stroke 31:2224–2229Google Scholar
  7. 7.
    Tatla S, Woodhead V, Foreman JC, Chain BM (1999) Free Radical Biol Med 26:14–24CrossRefGoogle Scholar
  8. 8.
    Tsien RY (1980) Biochemistry 19:2396–2404CrossRefGoogle Scholar
  9. 9.
    Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440–3450Google Scholar
  10. 10.
    Minta A, Kao JPY, Tsien RY (1989) J Biol Chem 264:8171–8178Google Scholar
  11. 11.
    Tsien RY, Pozzan T (1989) Methods Enzymol 172:230–244Google Scholar
  12. 12.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Chem Res Toxicol 5:227–231CrossRefGoogle Scholar
  13. 13.
    Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Brain Res 635:113–117CrossRefGoogle Scholar
  14. 14.
    Henderson LM, Chappell JB (1993) Eur J Biochem 217:973–980CrossRefGoogle Scholar
  15. 15.
    Wersto RP, Rosenthal ER, Crystal RG, Spring KR (1996) Proc Natl Acad Sci USA 93:1167–1172CrossRefGoogle Scholar
  16. 16.
    Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP (2004) Free Radical Res 38:1257–1267CrossRefGoogle Scholar
  17. 17.
    Rothe G, Valet G (1990) J Leukoc Biol 47:440–448Google Scholar
  18. 18.
    Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) Anal Biochem 253:162–168CrossRefGoogle Scholar
  19. 19.
    Chen CS, Gee KR (2000) Free Radical Biol Med 28:1266–1278CrossRefGoogle Scholar
  20. 20.
    Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP (1999) Free Radical Biol Med 26:148–161CrossRefGoogle Scholar
  21. 21.
    Rota C, Chignell CF, Mason RP (1999) Free Radical Biol Med 27:873–881CrossRefGoogle Scholar
  22. 22.
    Afzal M, Matsugo S, Sasaki M, Xu B, Aoyama K, Takeuchi T (2003) Biochem Biophys Res Commun 304:619–624CrossRefGoogle Scholar
  23. 23.
    Kooy NW, Royall JA, Ischiropoulos H (1997) Free Radical Res 27:245–254Google Scholar
  24. 24.
    Yoshida Y, Shimakawa S, Itoh N, Niki E (2003) Free Radical Res 37:861–872CrossRefGoogle Scholar
  25. 25.
    Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Free Radical Biol Med 27:146–159CrossRefGoogle Scholar
  26. 26.
    Wardman P, Burkitt MJ, Patel KB, Lawrence A, Jones CM, Everett SA, Vojnovic B (2002) J Fluorescence 12:65–68CrossRefGoogle Scholar
  27. 27.
    Nagano T, Yoshimura T (2002) Chem Rev 102:1235–1269CrossRefGoogle Scholar
  28. 28.
    Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Anal Chem 70:2446–2453CrossRefGoogle Scholar
  29. 29.
    Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T (2005) J Am Chem Soc 127:3684–3685CrossRefGoogle Scholar
  30. 30.
    Meineke P, Rauen U, de Groot H, Korth H-G, Sustmann R (1999) Chem Eur J 5:1738–1747CrossRefGoogle Scholar
  31. 31.
    Franz KJ, Singh N, Lippard SJ (2000) Angew Chem Int Ed 39:2120–2122CrossRefGoogle Scholar
  32. 32.
    Lim MH, Lippard SJ (2005) J Am Chem Soc 127:12170–12171CrossRefGoogle Scholar
  33. 33.
    Soh N, Katayama Y, Maeda M (2001) Analyst 126:564–566CrossRefGoogle Scholar
  34. 34.
    Katayama Y, Soh N, Maeda M (2001) Chemphyschem 2:655–661CrossRefGoogle Scholar
  35. 35.
    Katayama Y, Soh N, Maeda M (2002) Bull Chem Soc Jpn 75:1681–1691CrossRefGoogle Scholar
  36. 36.
    Soh N, Imato T, Kawamura K, Maeda M, Katayama Y (2002) Chem Commun 2650–2651Google Scholar
  37. 37.
    Steinbeck MJ, Khan AU, Karnovsky MJ (1992) J Biol Chem 267:13425–13433Google Scholar
  38. 38.
    Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Angew Chem Int Ed 38:2899–2901CrossRefGoogle Scholar
  39. 39.
    Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi, K, Higuchi T, Nagano T (2001) J Am Chem Soc 123:2530–2536CrossRefGoogle Scholar
  40. 40.
    Song B, Wang G, Yuan J (2005) Chem Commun 3553–3555Google Scholar
  41. 41.
    Song B, Wang G, Tang M, Yuan J (2005) New J Chem 29:1431–1438CrossRefGoogle Scholar
  42. 42.
    Nakano M (1990) Methods Enzymol 186:585–591CrossRefGoogle Scholar
  43. 43.
    Takahama U (1993) Photochem Photobiol 57:376–379Google Scholar
  44. 44.
    Nakano M, Sugioka K, Ushijima Y, Goto T (1986) Anal Biochem 159:363–369CrossRefGoogle Scholar
  45. 45.
    Thompson A, Lever JR, Canella KA, Miura K, Posner GH, Seliger HH (1986) J Am Chem Soc 108:4498–4504CrossRefGoogle Scholar
  46. 46.
    Zhang G, Li X, Ma H, Zhang D, Li J, Zhu D (2004) Chem Commun 2072–2073Google Scholar
  47. 47.
    Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D (2004) J Am Chem Soc 126:11543–11548CrossRefGoogle Scholar
  48. 48.
    Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Angew Chem Int Ed 43:2389–2391CrossRefGoogle Scholar
  49. 49.
    Maeda H, Matsu-ura S, Nishida M, Senba T, Yamauchi Y, Ohmori H (2001) Chem Pharm Bull 49:294–298CrossRefGoogle Scholar
  50. 50.
    Maeda H, Matsu-ura S, Nishida M, Yamauchi Y, Ohmori H (2002) Chem Pharm Bull 50:169–174CrossRefGoogle Scholar
  51. 51.
    Lo L-C, Chu C-Y (2003) Chem Commun 2728–2729Google Scholar
  52. 52.
    Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) J Am Chem Soc 126:15392–15393CrossRefGoogle Scholar
  53. 53.
    Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) 127:16652–16659Google Scholar
  54. 54.
    Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) Angew Chem Int Ed 41:4495–4498CrossRefGoogle Scholar
  55. 55.
    Perschke H, Broda E (1961) Nature 190:257–258CrossRefGoogle Scholar
  56. 56.
    Wu M, Lin Z, Dürkop A, Wolfbeis OS (2004) Anal Bioanal Chem 380:619–626CrossRefGoogle Scholar
  57. 57.
    Wolfbeis OS, Schäferling M, Dürkop A (2003) Microchim Acta 143:221–227CrossRefGoogle Scholar
  58. 58.
    Schäferling M, Wu M, Wolfbeis OS (2004) J Fluoresc 14:561–568CrossRefGoogle Scholar
  59. 59.
    Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS (2005) Anal Biochem 340:66–73CrossRefGoogle Scholar
  60. 60.
    Soh N, Sakawaki O, Makihara K, Odo Y, Fukaminato T, Kawai T, Irie M, Imato T (2005) Bioorg Med Chem 13:1131–1139CrossRefGoogle Scholar
  61. 61.
    Akasaka K, Suzuki T, Ohrui H, Meguro H (1987) Anal Lett 20:731–745, 797–807Google Scholar
  62. 62.
    Akasaka K, Ohrui H, Meguro H (1993) J Chromatogr 628:31–35CrossRefGoogle Scholar
  63. 63.
    Fang X, Mark G, von Sonntag C (1996) Ultrasonics Sonochem 3:57–63CrossRefGoogle Scholar
  64. 64.
    Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW (2005) J Appl Physiol 98:2304–2310CrossRefGoogle Scholar
  65. 65.
    Qu X, Kirschenbaum LJ, Borish ET (2000) Photochem Photobiol 71:307–313CrossRefGoogle Scholar
  66. 66.
    Makrigiorgos GM, Baranowska-Korttlewicz J, Bump E, Sahu SK, Berman RM, Kassis AI (1993) Int J Radiat Biol 63:445–458CrossRefGoogle Scholar
  67. 67.
    Makrigiorgos GM, Folkard M, Huang C, Bump E, Baranowska-Kortylewicz, Sahu SK, Michael BD, Kassis AI (1994) Radiat Res 138:177–185CrossRefGoogle Scholar
  68. 68.
    Makrigiorgos GM, Bump E, Huang C, Baranowska-Kortylewicz J, Kassis AI (1995) Free Radical Biol Med 18:669–678CrossRefGoogle Scholar
  69. 69.
    Blough NV, Simpson DJ (1988) J Am Chem Soc 110:1915–1917CrossRefGoogle Scholar
  70. 70.
    Green SA, Simpson DJ, Zhou G, Ho PS, Blough NV (1990) J Am Chem Soc 112:7337–7346CrossRefGoogle Scholar
  71. 71.
    Kieber DJ, Blough NV (1990) Anal Chem 62:2275–2283CrossRefGoogle Scholar
  72. 72.
    Kieber DJ, Blough NV (1990) Free Radical Res Commun 10:109–117Google Scholar
  73. 73.
    Gerlock JL, Zacmanidis PJ, Bauer DR, Simpson DJ, Blough NV, Salmeen IT (1990) Free Radical Res Commun 10:119–121Google Scholar
  74. 74.
    Pou S, Huang Y-I, Bhan A, Bhadti VS, Hosmane RS, Wu SY, Cao G-L, Rosen GM (1993) Anal Biochem 212:85–90CrossRefGoogle Scholar
  75. 75.
    Pou S, Bhan A, Bhadti VS, Wu SY, Hosmane RS, Rosen GM (1995) FASEB J 9:1085–1090Google Scholar
  76. 76.
    Li B, Blough NV, Gutierrez PL (2000) Free Radical Biol Med 29:548–556CrossRefGoogle Scholar
  77. 77.
    Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE (2004) J Biol Chem 279:23453–23462CrossRefGoogle Scholar
  78. 78.
    Yang X-F, Guo X-Q (2001) Anal Chim Acta 434:169–177CrossRefGoogle Scholar
  79. 79.
    Yang X-F, Guo X-Q (2001) Analyst 126:1800–1804CrossRefGoogle Scholar
  80. 80.
    Setsukinai K-I, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) J Biol Chem 278:3170–3175CrossRefGoogle Scholar
  81. 81.
    Setsukinai K-I, Urano Y, Kikuchi K, Higuchi T, Nagano T (2000) J Chem Soc Perkin Trans 2:2453–2457Google Scholar
  82. 82.
    Soh N, Makihara K, Sakoda E, Imato T (2004) Chem Commun 496–497Google Scholar
  83. 83.
    Al-Mehdi AB, Shuman H, Fisher AB (1997) Am J Physiol 272:L294–L300Google Scholar
  84. 84.
    Benov L, Sztejnberg L, Fridovich I (1998) Free Radical Biol Med 25:826–831CrossRefGoogle Scholar
  85. 85.
    Maeda H, Yamamoto K, Nomura Y, Kohno I, Hafsi L, Ueda N, Yoshida S, Fukuda M, Fukuyasu Y, Yamauchi Y, Itoh N (2005) J Am Chem Soc 127:68–69CrossRefGoogle Scholar
  86. 86.
    Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) Angew Chem Int Ed 44:2922–2925CrossRefGoogle Scholar
  87. 87.
    Tang B, Zhang L, Zhang L-L (2004) Anal Biochem 326:176–182CrossRefGoogle Scholar
  88. 88.
    Zhang L, Tang B, Ding Y (2005) J Agric Food Chem 53:549–553CrossRefGoogle Scholar
  89. 89.
    Medvedeva N, Martin VV, Weis AL, Likhtenshten GI (2004) J Photochem Photobiol A 163:45–51CrossRefGoogle Scholar
  90. 90.
    Olojo RO, Xia RH, Abramson JJ (2005) Anal Biochem 339:338–344CrossRefGoogle Scholar
  91. 91.
    Tang B, Zhang L, Hu J-X, Li P, Zhang H, Zhao Y-X (2004) Anal Chim Acta 502:125–131CrossRefGoogle Scholar
  92. 92.
    Soh N, Ariyoshi T, Fukaminato T, Nakano K, Irie M, Imato T (2005) Bioorg Med Chem Lett (in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations