Skip to main content
Log in

Cascade ultrafiltration and competing ligand exchange for kinetic speciation of aluminium, iron, and nickel in fresh water

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Kinetic speciation of nickel, aluminium, and iron in fresh water has been investigated by cascade ultrafiltration followed by competing ligand exchange of the ultrafiltered fractions. Graphite furnace atomic absorption spectrometry was used to measure the kinetics of metal complex dissociation. Dissolved metal species were fractionated by cascade ultrafiltration. Metal speciation in each ultrafiltered fraction was then characterized as free metal ions, “labile” metal complexes (with dissociation rate constants ≥10−3 s−1), “slowly labile” metal complexes (with dissociation rate constants >10−6 s−1), and “inert” metal complexes (with dissociation rate constants <10−6 s−1). The experimental results were compared with the predictions of a computer-based equilibrium speciation model, the Windermere humic aqueous model (WHAM) V. Cascade ultrafiltration coupled with kinetic speciation of the metal species in each molecular weight cut-off (MWCO) fraction provided a more comprehensive picture and insight into the physical and the chemical characteristics of the metal species than either ultrafiltration or measurement of dissociation kinetics alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Vitre RR, Bujard F, Bernard C, Buffle J (1987) Int J Environ Anal Chem 31:145–163

    Google Scholar 

  2. Buffle J, Perret D, Newman M (1992) In: Buffle J, van Leeuwen H (eds) Environmental particles, vol 1. Lewis Publishers, Boca Raton, FL, pp 171–230

    Google Scholar 

  3. Stenson A, Marshall AG, Cooper WT (2003) Anal Chem 75:1275–1284

    Article  PubMed  Google Scholar 

  4. Cook RL, McIntyre DD, Langford CH, Vogel HJ (2003) Environ Sci Technol 37:3935–3944

    Article  PubMed  Google Scholar 

  5. Piccolo A (2001) Soil Sci 166:810–832

    Article  Google Scholar 

  6. Pham KM, Garnier J (1998) Environ Sci Technol 32:440–449

    Article  Google Scholar 

  7. Figura P, McDuffie B (1980) Anal Chem 52:1433–1439

    Article  Google Scholar 

  8. Florence TM (1982) Anal Chem 52:1433–1439

    Google Scholar 

  9. Liu Y, Ingle JD (1989) Talanta 36:185–192

    Article  Google Scholar 

  10. Waller PA, Pickering WF (1990) Chem Speciation Bioavailability 2:127–138

    Google Scholar 

  11. Fasfous II, Yapici T, Murimboh J, Hassan NM, Chakrabarti CL, Back MH, Lean DRS, Grégoire DC (2004) Environ Sci Technol 38:4979–4986

    Article  PubMed  Google Scholar 

  12. Burba P (1994) Fresenius J Anal Chem 348:301–311

    Article  Google Scholar 

  13. Lavigne JA, Langford CH, Mak MKS (1987) Anal Chem 59:2616–2620

    Article  Google Scholar 

  14. Larsson JA, Pardue HL (1989) Anal Chim Acta 224:289–303

    Article  Google Scholar 

  15. Laios I, Fast DM, Pardue HL (1986) Anal Chim Acta 180:429–443

    Article  Google Scholar 

  16. Olson DL, Shuman MS (1983) Anal Chem 55:1103–1107

    Google Scholar 

  17. Langford CH, Gutzman DW (1992) Anal Chim Acta 256:183–201

    Article  Google Scholar 

  18. Olson DL, Shuman MS (1983) Anal Chem 55:1103–1107

    Google Scholar 

  19. Olson DL, Shuman MS (1985) Geochim Cosmochim Acta 49:1371–1375

    Article  Google Scholar 

  20. Lu Y, Chakrabarti CL, Back MH, Grégoire DC, Schroeder WH (1994) Anal Chim Acta 293:95–108

    Article  Google Scholar 

  21. Lu Y, Chakrabarti CL, Back MH, Sekaly ALR, Grégoire DC, Schroeder WH (1996) J Anal Atom Spectrom 11:1189–1201

    Article  Google Scholar 

  22. Lu Y, Chakrabarti CL, Back MH, Schroeder WH (1995) Int J Environ Anal Chem 60:313–317

    Google Scholar 

  23. Lu Y, Chakrabarti CL, Back MH, Grégoire DC, Schroeder WH, Szabo AG, Bramall L (1994) Anal Chim Acta 288:131–139

    Article  Google Scholar 

  24. Chakrabarti CL, Lu Y, Cheng J, Back MH, Schroeder WH (1993) Anal Chim Acta 276:47–64

    Article  Google Scholar 

  25. Mcllaughlin MJ, Tiller KG, Smart MK (1997) Aust J Soil Res 35:183–189

    Article  Google Scholar 

  26. Thurman EM (1985) Aquatic humic substances. In: Thurman EM DrW (ed) Organic geochemistry of natural waters. Junk Publishers, Dordrecht, pp 273–361

    Google Scholar 

  27. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. John Wiley, New York, USA, pp 380–382, 398–403

    Google Scholar 

  28. Batley GE (1989) Trace element speciation: analytical methods and problems. CRC Press, Boca Raton, USA, pp 43–116

    Google Scholar 

  29. Wheeler JR (1976) Limnol Oceanogr 21:846–852

    Google Scholar 

  30. Marquardt DWJ (1963) Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  31. Burba P (1994) Fresenius J Anal Chem 348:301–311

    Article  Google Scholar 

  32. Town RM, Filella M (2002) Rev Environ Sci Biotechnol 1:277–297

    Article  Google Scholar 

  33. Mandal R, Hassan NM, Murimboh J, Chakrabarti CL, Back MH, Rahayu U, Lean DRS (2002) Environ Sci Technol 36:1477–1488

    Article  PubMed  Google Scholar 

  34. Sigg L (1998) Partitioning of metals to suspended particles. In: Allen HE, Garrison AW, Luther GW III (eds) Metals in surface waters. Ann Arbor Press, Chelsea, MI, USA, pp 217–328

    Google Scholar 

  35. Tessier A (1992) In: Buffle J, van Leeuwen HP (eds) Environmental particles. Lewis Publishers, Boca Raton, FL, USA, pp 425–453

    Google Scholar 

  36. Mandal R, Salam MSA, Murimboh J, Hassan NM, Chakrabarti CL, Back MH, Grégoire DC (2000) Environ Sci Technol 34:2201–2208

    Article  Google Scholar 

  37. Mckinnon AJ, Scollary GR (1997) Talanta 44:1649–1658

    Article  Google Scholar 

  38. Campbell PGC, Bisson M, Bougie R, Tessier A, Villeneuve J (1983) Anal Chem 55:2246–2252

    Article  Google Scholar 

  39. Tipping E (1994) Comput Geosci 20:973–1023

    Article  Google Scholar 

  40. Tipping E, Hurley MA (1992) Geochim Cosmochim Acta 56:3627–3641

    Article  Google Scholar 

  41. Davison W, De Vitre R (1992) In: Buffle J, van Leeuwen HP (eds) Environmental particles. Lewis Publishers, Boca Raton, FL, USA, pp 315–355

    Google Scholar 

  42. Laxen DPH, Chandler IM (1982) Anal Chem 54:1350–1355

    Google Scholar 

  43. Horowitz AJ, Lum KR, Garbarino JR, Hall GEM, Lemieux C, Demas CR (1996) Environ Sci Technol 30:954–963

    Article  Google Scholar 

  44. Achterberg EP, van den Berg CMG, Boussemart M, Davison W (1997) Geochim Cosmochim Acta 61:5233–5253

    Article  Google Scholar 

  45. Ross JM, Sherrell RM (1999) Limnol Oceanogr 44:1019–1034

    Google Scholar 

  46. McKnight D, Bencala KE (1988) Arct Alp Res 20:492–500

    Google Scholar 

  47. Kimball BA, McKnight DM, Wetherbee GA, Harnish RA (1992) Chem Geol 96:227–239

    Article  Google Scholar 

  48. Shiller AM (1997) Geochim Cosmochim Acta 61:4321–4330

    Article  Google Scholar 

  49. Gustafsson Ö, Widerlund A, Andersson PS, Ingri J, Roos P, Ledin A (2000) Mar Chem 71:1–21

    Article  Google Scholar 

  50. Olivié-Lauquet G, Allard T, Bertaux J, Muller JP (2000) Chem Geol 170:113–131

    Article  Google Scholar 

  51. Santschi PH, Guo L, Means JC, Ravichandran M (1999) In: Bianchi TS, Pennock JR, Twilley RR (eds) Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York, USA, pp 347–380

    Google Scholar 

  52. Hering JG, Morel FMM (1990) In: Stumm W (ed) Aquatic chemical kinetics, reaction rates of processes in natural waters. John Wiley, New York, USA, pp 145–171

    Google Scholar 

  53. Langford CH, Cook RL (1995) Analyst 120:591–596

    Article  Google Scholar 

  54. Hering JG, Morel FMM (1990) Environ Sci Technol 24:242–252

    Article  Google Scholar 

  55. Celo V, Murimboh J, Salam MSA, Chakrabarti CL (2001) Environ Sci Technol 35:1084–1089

    Article  PubMed  Google Scholar 

  56. Sekaly ALR, Murimboh J, Ben Younes ME, Hassan NM, Mandal R, Chakrabarti CL, Back MH, Grégoire DC (2003) Environ Sci Technol 37:68–74

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Nickel Producers Environmental Research Association, USA, Inco Ltd. and Falconbridge Ltd., Canada, for three research contracts, to the Natural Sciences and Engineering Research Council of Canada (NSERC), for a research grant, the Metals in the Environment-Research Network Grant, Ontario Power Generation Inc., and the Mining Association of Canada. N.M. Hassan is grateful to the Government of Libya for a postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuni L. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, N.M., Murimboh, J.D., Sekaly, A.L.R. et al. Cascade ultrafiltration and competing ligand exchange for kinetic speciation of aluminium, iron, and nickel in fresh water. Anal Bioanal Chem 384, 1558–1566 (2006). https://doi.org/10.1007/s00216-006-0361-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0361-1

Keywords

Navigation