Skip to main content
Log in

Use of pseudo-sample extraction and the projection technique to estimate the chemical rank of three-way data arrays

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Determining the rank of a trilinear data array is a first step in subsequent trilinear component decomposition. Different from estimating the rank of bilinear data, it is more difficult to decide the significant number of component to fit the trilinear decompositions exactly. General methods of rank estimation utilize the information contained in the singular values but ignore information from eigenvectors. In this paper, a rank estimating method specifically for trilinear data arrays is proposed. It uses the idea of direct trilinear decomposition (DTLD) to compress the cube matrix into two pseudo sample matrices which are then decomposed by singular value decomposition. Two eigenvectors combined with the projection technique are used to estimate the rank of trilinear data arrays. Simulated trilinear data arrays with homoscedastic and heteroscedastic noise, different noise levels, high collinearity, and real three-way data arrays have been used to illustrate the feasibility of the proposed method. Compared with other factor-determining methods, for example use of the factor indication function (IND), residual percentage variance (RPV), and the two-mode subspace comparison approach (TMSC), the results showed that the new method can give more reliable answers under the different conditions applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smilde AK, Bro R, Geladi P (2004) Multi-way analysis: Applications in the chemical sciences. Wiley, New York, pp 23–34

    Google Scholar 

  2. Espinosa-Mansilla A, Pena AMDL, Gomez DG, Salinas F (2005) Anal Chim Acta 531:257–266

    Article  Google Scholar 

  3. Jiji RD, Andersson GG, Booksh KS (2000) J Chemom 14:171–185

    Article  Google Scholar 

  4. Bijlsma S, Smilde AK (2000) J Chemom 15:541–560

    Google Scholar 

  5. Pravdova V, Walczak B, Massart DL, Robberech H, Cauwenbergh RV, Hendrix P, Deelstra H (2001) J Food Composition and Analysis 14:207–225

    Article  Google Scholar 

  6. Pravdova V, Boucon C, Jong SD, Walczak B, Massart DL (2002) Anal Chim Acta 462:133–148

    Article  Google Scholar 

  7. Booksh KS, Kowalski BR (1994) Anal Chem 66:782A–791A

    Article  Google Scholar 

  8. Kruskal JB, Harshman RA, Lundy ME (1989) Rank, decomposition, and uniqueness for 3-way and N-way arrays. In: Coppi R, Bolasco S (eds) Multiway data analysis. Elsevier, Amsterdam, pp 7–18

    Google Scholar 

  9. Faber NM, Bro R, Hopke PK (2003) Chemom Intell Lab Sys 65:119–137

    Article  Google Scholar 

  10. Andensen CM, Bro R (2003) J Chemom 17:200–215

    Article  Google Scholar 

  11. Tucker LR (1966) Psychometrika 31:279–311

    Article  PubMed  Google Scholar 

  12. Harshman RA (1970) UCLA working papers in phonetics, pp 1–84

  13. Scanchez E, Kowalski BR (1990) J Chemom 4:29–45

    Article  Google Scholar 

  14. Linder M, Sundberg R (2002) J Chemom 16:12–27

    Article  Google Scholar 

  15. Wu HL, Shibukawa M, Oguma K (1998) J Chemom 12:1–26

    Article  Google Scholar 

  16. Jiang JH, Wu HL, Chen ZP, Yu RQ (2000) J Chemom 14:15–36

    Article  Google Scholar 

  17. Chen ZP, Wu HL, Jiang JH, Yu RQ (2001) J Chemom 15:439–453

    Article  Google Scholar 

  18. Chen ZP, Wu HL, Jiang JH, Yu RQ (2001) J Chemom 15:149–167

    Article  Google Scholar 

  19. Malinowski ER (2002) Factor analysis in chemistry, 3rd edition. Wiley, New York, pp 73–130

    Google Scholar 

  20. Meloun M, Capek J, Miksik P, Brereton G (2000) Anal Chim Acta 423:51–68

    Article  Google Scholar 

  21. Wasim M, Brereton RG (2004) Chemom Intell Lab Syst 72:133–151

    Article  Google Scholar 

  22. Bro R (1997) Chemom Intell Lab Syst 38:149–171

    Article  Google Scholar 

  23. Harshman RA, Lundy ME (1984) Data preprocessing and the extended PARAFAC model. In: Law HG, Snyder CW Jr, Hattie J, McDonald RP (eds) Research methods for multimode data analysis. Praeger, New York, pp 216–284

    Google Scholar 

  24. Louwerse DJ, Smilde AK, Kiers HAL (1999) J Chemom 13:491–510

    Article  Google Scholar 

  25. Chen ZP, Liu Z, Cao YZ, Yu RQ (2001) Anal Chim Acta 444:295–307

    Article  Google Scholar 

  26. Bro R, Kiers HAL (2003) J Chemom 17:274–286

    Article  Google Scholar 

  27. Xie HP, Jiang JH, Long N, Shen GL, Wu HL, Yu RQ (2003) Chemom Intell Lab Syst 66:101–115

    Google Scholar 

  28. Xie HP, Jiang JH, Shen GL, Yu RQ (2002) Comput Chem 26:183–190

    Article  PubMed  Google Scholar 

  29. Ding YJ, Wu HL, Fang DM, Cui H, Sun XY, Xia AL, Hu LQ, Yu RQ (2005) Chem J Chinese Universities 26:1255–1257

    Google Scholar 

  30. Xin MT (1989) Anal Chem 61:2219–2224

    Article  Google Scholar 

Download references

Acknowledgement

The research was financially supported by the National Natural Science Foundation of China (20375012 and 20475014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Wu, H., Jiang, J. et al. Use of pseudo-sample extraction and the projection technique to estimate the chemical rank of three-way data arrays. Anal Bioanal Chem 384, 1493–1500 (2006). https://doi.org/10.1007/s00216-006-0307-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0307-7

Keywords

Navigation