Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12)

  • G. Waychunas
  • T. Trainor
  • P. Eng
  • J. Catalano
  • G. Brown
  • J. Davis
  • J. Rogers
  • J. Bargar
Original Paper


X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c (0001) and r (10–12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of “edge-sharing” bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods.


Crystal truncation rod GIXAFS EXAFS Surface structure Hematite Arsenate 


  1. 1.
    Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. Rev Mineral 23:177–260Google Scholar
  2. 2.
    Waychunas GA, Brown GE, Ponader CW, Jackson WE (1988) Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates. Nature 332:251–253CrossRefGoogle Scholar
  3. 3.
    Farges F, Brown GE, Rehr JJ (1997) Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment. Phys Rev B 56:1809–1819CrossRefGoogle Scholar
  4. 4.
    Sposito G (1986) Distinguishing adsorption from surface precipitation. ACS Symp Ser 323:217–229CrossRefGoogle Scholar
  5. 5.
    Arai Y, Sparks DL, Davis JA (2004) Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite-water interface. Environ Sci Tech 38:817–824CrossRefGoogle Scholar
  6. 6.
    Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models: an evaluation of model parameter estimation using FITEGL and oxide mineral titration data. J Colloid Interf Sci 142:448–469CrossRefGoogle Scholar
  7. 7.
    Brown GE, Sturchio NC (2002) Overview of synchrotron radiation applications to low temperature geochemistry and environmental science. Rev Mineral Geochem 49:1–115Google Scholar
  8. 8.
    Waychunas GA (2002) Grazing-incidence X-ray absorption and emission spectroscopy. Rev Mineral Geochem 49:267–316Google Scholar
  9. 9.
    Waychunas GA, Brown GE (1994) Fluorescence yield XANES and EXAFS experiments: application to highly dilute and surface samples. Adv X Ray Anal 37:607–617Google Scholar
  10. 10.
    Stohr J (1992) NEXAFS spectroscopy (Springer Series in Surface Science, vol 25). Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev Mineral Geochem 49:341–428Google Scholar
  12. 12.
    Robinson IK, Tweet DJ (1992) Surface X-ray diffraction. Rep Prog Phys 55:599–651CrossRefGoogle Scholar
  13. 13.
    Eng PJ, Trainor TP, Brown GE, Waychunas GA, Newville M, Sutton SR, Rivers ML (2000) Structure of the hydrated α-Al2O3 (0001) surface. Science 288:1029–1033CrossRefPubMedGoogle Scholar
  14. 14.
    Trainor T, Eng P, Brown GE, Waychunas G, Newville M, Sutton S, Rivers M (2004) Structure and reactivity of the hydrated hematite (0001) surface. Surf Sci 573:204–224CrossRefGoogle Scholar
  15. 15.
    Trainor TP, Eng P, Brown GE, Robinson IK, DeSantis M (2002) Crystal truncation rod diffraction study of the clean and hydrated α-Al2O3 (1–102) surface. Surf Sci 496:238–250CrossRefGoogle Scholar
  16. 16.
    Fenter P, Teng H, Geissbuhler P, Hanchar JM, Nagy KL, Sturchio NC (2000) Atomic-scale structure of the orthoclase (001)-water interface measured with high-resolution X-ray reflectivity. Geochem Cosmochim Acta 64:3663–3673CrossRefGoogle Scholar
  17. 17.
    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, NYGoogle Scholar
  18. 18.
    Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026CrossRefGoogle Scholar
  19. 19.
    Burdett JK, McLarnan TJ (1984) An orbital interpretation of Pauling’s rules. Am Mineral 69:601–621Google Scholar
  20. 20.
    Rogers JH, Bargar JR, Waychunas GA, Yoon TH, Brown GE (2004) A novel spectrometer system for hard X-ray interfacial environmental chemistry. Am Inst Phys Conf Proc 708:981–984Google Scholar
  21. 21.
    George GN (2001) EXAFSPAK homepage. See, last accessed August 2005
  22. 22.
    Webb S (2004) Sam’s Interface for XAS Package (SixPACK) homepage. See, last accessed August 2005
  23. 23.
    Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251–2269CrossRefGoogle Scholar
  24. 24.
    Waychunas GA, Fuller CC, Rea BA, Davis JA (1996) Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochim Cosmochim Acta 60:1765–1781CrossRefGoogle Scholar
  25. 25.
    Robinson IK (1986) Crystal truncation rods and surface roughness. Phys Rev B 33:3830–3836CrossRefGoogle Scholar
  26. 26.
    Dosch H (1992) Critical phenomena at surfaces and interfaces. Springer Tracts Mod Phys 126:1–145Google Scholar
  27. 27.
    Sinha SK (1996) Surface roughness by X-ray and neutron scattering methods. Acta Phys Polonica A 89:219–234Google Scholar
  28. 28.
    Vlieg E (2000) ROD: A program for surface X-ray crystallography. J Appl Cryst 33:401–405CrossRefGoogle Scholar
  29. 29.
    Trainor TP, Eng IK, Robinson IK (2002) Calculation of crystal truncation rod structure factors for arbitrary rational surface terminations. J Appl Cryst 35:696–701CrossRefGoogle Scholar
  30. 30.
    Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. Wiley, New YorkGoogle Scholar
  31. 31.
    Fenter PA (2002) X-ray reflectivity as a probe of mineral-fluid interfaces: a users guide. Rev Mineral Geochem 49:149–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • G. Waychunas
    • 1
  • T. Trainor
    • 2
  • P. Eng
    • 3
  • J. Catalano
    • 4
  • G. Brown
    • 5
  • J. Davis
    • 6
  • J. Rogers
    • 7
  • J. Bargar
    • 7
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.University of Alaska FairbanksFairbanksUSA
  3. 3.CARS, Argonne National LaboratoryArgonneUSA
  4. 4.Environmental Chemistry DivisionArgonne National LaboratoryArgonneUSA
  5. 5.Stanford UniversityStanfordUSA
  6. 6.US Geological SurveyMenlo ParkUSA
  7. 7.Stanford Synchrotron Radiation LaboratoryStanfordUSA

Personalised recommendations