Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes

Abstract

Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near-infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    See, for example (a) Anton Paar—Lab density & concentration meter/Alcohol Meters; online at: http://www.anton-paar.com/density-meter/lab-density_cxsn-5nuflp.en.0. jsp; (b) Alcohol Analyser; online at: http://www.nirtech.zip.com.au/AlcoholAnalyser.htm; (c) McNab Food & Beverage Industry Systems, online at: http://www.themcnab.com/food_beverage.htm; (d) FOSS—Beer; online at: http://www.foss.dk/c/p/solutions/customersegments/Beer/default.asp

  2. 2.

    See, for example (a) PreSens GmbH; online at: http://www.presens.de/html/start.html; (b) Hac-Lange; online at: http://shop.hach-lange.com/shop/action_q/news/news_id/100/lkz/II/spkz/en/; (c) Fiber Optic Oxygen Sensors; online at: http://www.oceanoptics.com/products/foxysystem.asp; (d) Submersible sensors—Oxygen Optodes 3830/3975/3930—Aanderaa Instruments; online at: http://www.aanderaa.no/render.asp?ID=156&segment=46&

References

  1. 1.

    Workman J, Koch M, Veltkamp DJ (2003) Anal Chem 75:2859–2876

    Article  CAS  Google Scholar 

  2. 2.

    Dünnebier G, Bamberg A (2004) Chem Ing Tech 76:1467–1474

    Article  CAS  Google Scholar 

  3. 3.

    Kueppers S, Haider M (2003) Anal Bioanal Chem 376:313–315

    PubMed  CAS  Google Scholar 

  4. 4.

    Grant B (2005) Process spectroscopy market. Spectrosc Eur 17:6 (see also http://www.bccresearch.com/instrum/G228R.html)

    Google Scholar 

  5. 5.

    Gurden SP, Westerhuis JA, Smilde AK (2002) AIChE J 48:2283–2297

    Article  CAS  Google Scholar 

  6. 6.

    Engelhard S, Gehmlich K, Schael F, Löhmannsröben HG (2001) In: Erb R, Heiden S (eds) Sensorik. Spektrum Akademischer Verlag, Heidelberg, pp 43–46

    Google Scholar 

  7. 7.

    Raffel B, Löhmannsröben HG, Schael F, Reich O, Engelhardt S (2002) Deutsche Patentanmeldung Nr. 10243665.7, 20.9.2002, Deutsches Patent- und Markenamt, München

  8. 8.

    Engelhard S, Löhmannsröben HG, Schael F (2004) Appl Spectrosc 58:1205–1209

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Reich O, Löhmannsröben HG, Schael F (2003) Phys Chem Chem Phys 5:5182–5187

    Article  CAS  Google Scholar 

  10. 10.

    Hörner G, Lau S, Löhmansröben HG (2004) Proc SPIE 5544:47–54

    Article  Google Scholar 

  11. 11.

    Schmälzlin E, van Dongen JT, Klimant I, Marmodée B, Steup M, Fisahn J, Geigenberger P, Löhmannsröben HG (2005) Biophys J 89 (in press)

  12. 12.

    Monson E, Brasuel M, Philbert MA, Kopelman R (2003) In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC, Boca Raton, FL

  13. 13.

    Demas JN, DeGraff BA, Coleman PB (1999) Anal Chem 71:793A–800A

    PubMed  CAS  Google Scholar 

  14. 14.

    Schultze RH, Lemke M, Löhmannsröben HG (2004) In: Hering P et al (eds) Laser in environmental and life sciences. Springer, Berlin Heidelberg New York, pp 79–98

    Google Scholar 

  15. 15.

    Beitz T, Laudien R, Löhmannsröben HG, Schultze RH (2004) Proc SPIE 5547:16–24

    Article  CAS  Google Scholar 

  16. 16.

    Lemke M, Fernández-Trujillo R, Löhmannsröben HG (2005) Sensors 5:61–69

    CAS  Article  Google Scholar 

  17. 17.

    Hörner G, Lau S, Kantor Z, Löhmansröben HG (2004) Analyst 129:772–778

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Engelhard S (2003) Optische Verfahren zur Qualitätskontrolle von Bier und zur Zellzahlbestimmung in S Cerevisiae Kultivierungen. PhD thesis, University of Potsdam

  19. 19.

    Workman JJ (1996) Appl Spectrosc Rev 31:251–320

    CAS  Google Scholar 

  20. 20.

    Puls O, Scheibenbogen K (1998) Adv Biochem Eng 59:123–152

    Google Scholar 

  21. 21.

    Jorge PAS, Caldas P, Rosa CC, Oliva AG, Santos JL (2004) Sens Actuators B 103:290–299

    Article  CAS  Google Scholar 

  22. 22.

    Blanco M, Villarroya I (2002) Trends Anal Chem 21:240–250

    Article  CAS  Google Scholar 

  23. 23.

    Meller G (2004) Intern Environ Technol 14:18–19

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Gerd Löhmannsröben.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Engelhard, S., Kumke, M.U. & Löhmannsröben, HG. Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes. Anal Bioanal Chem 384, 1107–1112 (2006). https://doi.org/10.1007/s00216-005-3364-4

Download citation

Keywords

  • Process analytical technology
  • Beer
  • Biomass
  • Foam analysis
  • NIR spectroscopy
  • Fluorescence quenching
  • Photon density wave spectroscopy