Skip to main content
Log in

Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 × 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denlinger JD, Rotenberg E, Warwick T, Visser G, Nordgren J, Guo J-H, Skytt P, Kevan SD, McCutcheon KS, Tobin JG, Shuh DK, Bucher JJ, Edelstein NM, Tonner BP (1995) Rev Sci Instrum 66:1342–1345

    Article  CAS  Google Scholar 

  2. Terry J, Schulze RK, Lashley J, Farr JD, Zocco T, Heinzelman K, Rotenberg E, Shuh DK, Van der Laan G, Tobin JG (2002) Surf Sci 499:L141–L147

    Article  CAS  Google Scholar 

  3. Tobin JG, Chung BW, Wadddill GD, Schulze RK, Terry J, Farr JD, Zocco T, Shuh DK, Heinzelman K, Rotenberg E, Van der Laan G (2003) Phys Rev B 68:155109

    Article  CAS  Google Scholar 

  4. Moore KT, Wall MA, Schwartz AJ, Chung BW, Shuh DK, Schulze RK, Tobin JG, (2003) Phys Rev Lett 90:196064

    Article  CAS  Google Scholar 

  5. Shuh DK, Butorin SM, Guo J-H, Nordgren J (2004) Mater Res Soc Symp Proc 802:131–136

    CAS  Google Scholar 

  6. Bluhm H, Andersson K, Araki T, Benzerara K, Brown GE Jr, Dynes JJ, Ghosal S, Hansen H-Ch, Hemminger JC, Hitchcock AP, Ketteler G, Kneedler E, Lawrence JR, Leppard GG, Majzlam J, Mun BS, Myneni SCB, Nilsson A, Ogasawara H, Ogletree DF, Pecher K, Shuh DK, Salmeron M, Tonner B, Tyliszczak T, Yoon TH (2005) J Electron Spectr (in press)

  7. Sharmasarkar S, Traina SJ, Tyliszczak T, Nilsson HJ, Shuh DK, in preparation (2005)

  8. Stohr J (1992) NEXAFS spectroscopy. Springer series in surface science 25, Springer-Verlag, Berlin Heidelberg New York

  9. Kilcoyne ALD, Tyliszczak T, Steele WF, Fakra S, Hitchcock P, Franck K, Anderson E, Harteneck B, Rightor EG, Mitchell GE, Hitchcock AP, Yang L, Warwick T, Ade H (2003) J Synch Rad 10:125

    Article  CAS  Google Scholar 

  10. Coonley MS (2004) (ed) Actinide oxides I and II. Actinide research quarterly 2 and 3, Nucl Mat Tech Div, Los Alamos National Laboratory, Los Alamos, NM, USA

  11. Wu ZY, Jollet F, Gota S, Thromat N, Gautier-Soyer M, Petit T (1999) J Phys Condens Matter 11:7185–7194

    Article  CAS  Google Scholar 

  12. Tyliszczak T, Warwick T, Kilcoyne ALD, Fakra S, Shuh DK, Yoon TH, Brown GE Jr, Andrews S, Chembrolu V, Strachan J, Acremann Y (2004) Synch Rad Instrum 2003. AIP Conf Proc 705:1356–1359

    Article  CAS  Google Scholar 

  13. Kilcoyne ALD, Tyliszczak T (2004) Synch Rad Instrum 2003. AIP Conf Proc 705:605–607

    Article  Google Scholar 

  14. Harteneck BD, Olynick DL, Veklerov E, Tendulkar M, Liddle JA, Kilcoyne ALD, Tyliszczak T (2004) J Vac Sci Technol B 22:3186–3190

    Article  CAS  Google Scholar 

  15. Advanced Light Source Molecular Science Beamline Webpages, LBN L, Berkeley, CA, (2005); http://beamline1102.alslbl.gov/; http://www-als.lbl.gov/als/techspecs/bl11.0.2.html

  16. Hitchcock AP (2004) Axis Version 21q (09-June-04). McMaster University, Hamilton ON Canada

    Google Scholar 

  17. Browne E, Firestone RB (1986) In: Shirley VS (ed) Table of radioactive isotopes. Wiley, New York, pp C14–C16

  18. Center for X-ray optics, X-ray Interactions with Matter, LBNL, Berkeley, CA, USA; http://www-cxro.lbl.gov/optical_constants

  19. Kalkowski G, Kaindl G, Brewer WD, Krone W (1987) Phys Rev B 35:2667–2677

    Article  CAS  Google Scholar 

  20. Van der Laan G, Moore KT, Tobin JG, Chung BW, Wall MA, Schwartz AJ (2004) Phys Rev Lett 93:097401

    Article  PubMed  CAS  Google Scholar 

  21. de Groot FMF (1991) PhD Thesis, X-ray absorption of transition metal oxides. University of Nijmegen, Nijmegen, The Netherlands

  22. Conradson SD, Abney KD, Begg BD, Brady ED, Clark DL, den Awer C, Ding M, Dorhout PK, Espinosa-Faller FJ, Gordon PJ, Haire RJ, Hess NJ, Hess RF, Keough DW, Lander GH, Lupinetti AJ, Morales LA, Neu MP, Palmer PD, Paviet-Hartmann P, Reilly SD, Runde WH, Tait CD, Veirs DK, Wastin F (2004) Inorg Chem 43:116–131

    Article  PubMed  CAS  Google Scholar 

  23. Tyliszczak T, Nilsson HJ, Nachimuthu P, Shuh DK (2005) unpublished experimental results

  24. Jollet F, Petit T, Gota S, Thromat N, Gautier-Soyer M, Pasturel A (1997) J Phys Condens Matter 9:9393–9401

    Article  CAS  Google Scholar 

  25. Buck EC, Colella M, Smith KL, Lumpkin GR (2002) Mat Res Soc Symp Proc 713:655–662

    CAS  Google Scholar 

Download references

Acknowledgements

This research, the ALS, and ALS-MES BL-11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098. The work was also partially supported by the Swedish Nuclear Fuel and Waste Management Company, SKB AB. REW was supported in part by the Office of Civilian Radioactive Waste Management Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract with the US Department of Energy and the Oak Ridge Associated Universities. The authors are grateful to Brian S. Fairchild of LBNL EH&S for his assistance in the performance of the actinide STXM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Shuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, H.J., Tyliszczak, T., Wilson, R.E. et al. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles. Anal Bioanal Chem 383, 41–47 (2005). https://doi.org/10.1007/s00216-005-3355-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3355-5

Keywords

Navigation