Skip to main content
Log in

Reflectometric interference spectroscopy combined with MALDI−TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with label free bio-interaction analysis based on reflectometric interference spectroscopy (RIfS). The potential of this concerted approach is demonstrated by measuring the binding properties of different vancomycin-type glycopeptide antibiotic mixtures. Although RIfS is sensitive and does not require use of a label, it cannot determine which components of a mixture have bound to the surface after incubation. Fortunately, each bound species has a unique mass that can, afterwards, be determined by mass spectrometry. Thus, the screening capability of RIfS is combined with the identification capability of mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmitt H-M, Brecht A, Piehler J, Gauglitz G (1997) Biosens Bioelectron 12:219–233

    Article  Google Scholar 

  2. Brecht A, Lang G, Gauglitz G (1993) J Anal Chem 346:615–617

    Article  CAS  Google Scholar 

  3. Brecht A, Gauglitz G, Kraus G, Nahm W (1993) Sens Actuator 11B:21–27

    Article  Google Scholar 

  4. Löfas S, Malmqvist M, Rönnberg I, Stenberg E, Liedberg B, Lundström I (1991) Sens Actuators B 5:79–84

    Article  Google Scholar 

  5. Myska DG (1997) Curr Opin Biotechnol 7:11–19

    Google Scholar 

  6. Malmqvist M, Karlsson R (1997) Curr Opin Chem Biol 3:378–383

    Article  Google Scholar 

  7. Tünnemann R, Mehlmann M, Süßmuth R D, Bühler B, Pelzer S, Wohlleben W, Fiedler H-P, Wiesmüller K-H, Gauglitz G, Jung G (2001) Anal Chem 73:4313–4318

    Article  PubMed  Google Scholar 

  8. Mehlmann M (2003) Einsatz optischer Biosensoren für die Protein- und Fermentationsanalyse. Dissertation, Eberhard-Karls-Universität Tübingen, Germany

  9. Mann M, Talbo G (1996) Curr Opin Biotechnol 7:11–19

    Article  CAS  PubMed  Google Scholar 

  10. Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R (1997) Anal Biochem 244:124–132

    Article  CAS  PubMed  Google Scholar 

  11. Nelson RW, Jarvik JW, Taillon BE, Tubbs KA (1999) Anal Chem 71:2858–2865

    Article  CAS  PubMed  Google Scholar 

  12. Nelson RW, Nedlekov D, Tubbs KA (2000) Electrophoresis 21:1155–1163

    Article  CAS  PubMed  Google Scholar 

  13. Yao C, Crandall LW (1994) In: Nagarajan R (ed) Glycopeptide antibiotics. R. Marcel Dekker Inc., New York, p 1

  14. Barna JCJ, Williams DH (1984) Ann Rev Microbiol 38:339–357

    Article  CAS  Google Scholar 

  15. Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Biosens Bioelectron 11:579–590

    Article  CAS  PubMed  Google Scholar 

  16. Brecht A, Gauglitz G, Nahm W (1992) Interferometric measurements used in chemical and biochemical sensors. Analusis 20(3):135–140

    CAS  Google Scholar 

  17. Gauglitz G, Nahm W (1991) Fresenius Z Anal Chem 341:279–283

    Article  CAS  Google Scholar 

  18. Krauss G (1993) Reflektometrisch-interferometrische Bestimmung organischer Verbindungen. Dissertation, Eberhard-Karls-Universität Tübingen, Germany

  19. Brecht A, Gauglitz G, Polster J (1993) Biosens Bioelectron 8:387–392

    Article  CAS  Google Scholar 

  20. Schmitt HM, Brecht A, Piehler J, Gauglitz G (1997) Biosens Bioelectron 12:809–816

    Article  CAS  Google Scholar 

  21. Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G (2000) Biosens Bioelectron 15(9–10):473–481

    Article  CAS  PubMed  Google Scholar 

  22. Hänel C (2003) Parameteroptimierung für zwei Verfahren zur markierungsfreien Analyse biomolekularer Wechselwirkungen. Dissertation. Eberhard-Karls-Universität Tübingen, Germany

  23. Jensen O, Podtelejnikov A, Mann M (1996) Rapid Commun Mass Spectrom 10:1371–1378

    Article  CAS  PubMed  Google Scholar 

  24. Nastume T, Nakayama H, Jansson Ö, Isobe T, Takio K, Mikoshiba K (2000) Anal Chem 72:4193–4198

    Article  PubMed  Google Scholar 

  25. Sönksen CP, Nordhoff E, Jansson Ö, Malmqvist M, Roepstorff P (1998) Anal Chem 70:2731–2736

    Article  PubMed  Google Scholar 

  26. Krone JR, Nelson RW, Dogruel D, Williams P, Granzow R (1997) Anal Biochem 244:124–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Martin Mehlmann was supported by the DFG-Graduate colleague “Quantitative Analysis and Characterisation of Pharmaceutically and Biochemically relevant Substances” at the University of Tübingen and by the Fonds der Chemischen Industrie. Desvancosamin-vancomycin was a kind gift from Dr Evi Stegmann, AG Wohlleben, University of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Gauglitz.

Additional information

Dedicated to the memory of Wilhelm Fresenius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehlmann, M., Garvin, A.M., Steinwand, M. et al. Reflectometric interference spectroscopy combined with MALDI−TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem 382, 1942–1948 (2005). https://doi.org/10.1007/s00216-005-3329-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3329-7

Keywords

Navigation