Skip to main content
Log in

Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential of fluorescence spectroscopy for characterizing the deterioration of extra virgin olive oil (EVOO) during heating was investigated. Two commercial EVOO were analysed by HPLC to determine changes in EVOO vitamin E and polyphenols as a result of heating at 170°C for 3 h. This thermal oxidation of EVOO caused an exponential decrease in hydroxytyrosol and vitamin E (R2=0.90 and 0.93, respectively) whereas the tyrosol content was relatively stable. At the same time, amounts of preformed hydroperoxides (ROOH), analysed by an indirect colorimetric method, decreased exponentially during the heating process (R2=0.94), as a result of their degradation into secondary peroxidation products. Fluorescence excitation spectra with emission at 330 and 450 nm were recorded to monitor polyphenols and vitamin E evolution and ROOH degradation, respectively. Partial least-squares calibration models were built to predict these indicators of EVOO quality from oil fluorescence spectra. A global approach was then proposed to monitor the heat charge from the overall fluorescence fingerprint. Different data pretreatment methods were tested. This study indicates that fluorescence spectroscopy is a promising, rapid, and cost-effective approach for evaluating the quality of heat-treated EVOO, and is an alternative to time-consuming conventional analyses. In future work, calibration models will be developed using a wide range of EVOO samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Engelsen SB (1997) J Am Oil Chem Soc 74:1495–1508

    CAS  Google Scholar 

  2. José L, Quiles M, Ramirez-Tortosa C, Gümez JA, Huertas JR, José M (2002) J Food Chem 76:461–468

    Article  Google Scholar 

  3. Fedel E (1988) Ellis Horwood Press, Chichester, England, Vch, pp 52–81

  4. Nissiotis M, Tasioula-Margari M (2003) J Food Chem 77:371–376

    Article  Google Scholar 

  5. Pellegini N, Francesco V, Buratti S, Brighenti F (2001) J Agric Food Chem 49:2532–2538

    Article  PubMed  Google Scholar 

  6. Ribarova F, Zanev R, Shishkov S, Rizov N (2003) J Food Composition Anal 16:569–667

    Google Scholar 

  7. Perrin J-L (1992) Revue française des corps gras 39:25–32

    CAS  Google Scholar 

  8. Gutfinger T (1981) J Am Oil Chem Soc 58:966–968

    CAS  Google Scholar 

  9. Rastrelli L, Passi S, Ippolito F, Vacca G, De Simone F (2002) J Agric Food Chem 50:5566–5570

    Article  CAS  PubMed  Google Scholar 

  10. Evangelisti F, Zunin P, Tiscornia E, Petacchi R, Drava G, Lanteri S (1997) J Am Oil Chem Soc 74:1017–1023

    CAS  Google Scholar 

  11. Amiot MJ, Fleuriet A, Macheix JJ (1986) J Agric Food Chem 34:823–826

    Article  CAS  Google Scholar 

  12. Cinquanta L, Esti M, La Notte E (1997) J Am Oil Chem Soc 74:1259–1264

    CAS  Google Scholar 

  13. Gümez-Alonso S, Salvador MD, Fregapane G (2002) J Agric Food Chem 50:6812–6817

    Article  PubMed  Google Scholar 

  14. Brenes M, Gracßa A, Dobarganes MC, Velasco J, n Romero C (2002) J Agric Food Chem 50:5962–5967

    Article  CAS  PubMed  Google Scholar 

  15. Sacchi R, Paduano A, Fiore F, Della Medaglia D, Ambrosino ML, Medina I (2002) J Agric Food Chem 50:2830–2835

    Article  CAS  PubMed  Google Scholar 

  16. Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2003) MAF, Prague, August 24–27

  17. Liang JH, Lin CC (2000) J Am Oil Chem Soc 77:709–713

    CAS  Google Scholar 

  18. Lai YW, Kemsley EK, Wilson RH (1995) J Food Chem 53:95–98

    Article  CAS  Google Scholar 

  19. Zhen-Yue J, Woollard ACS, Wolff SP (1991) Lipids 26:853–856

    PubMed  Google Scholar 

  20. Birlouez-Aragon I, Girard F, Ravelontseheno L, Bourgeois C, Belliot J-P, Abitbol G (1995) Int J Vit Nutr Res 65:261–266

    CAS  Google Scholar 

  21. Despagne F, Massart DL (1997) J Anal Chem 69:3391–3399

    Article  CAS  Google Scholar 

  22. Otto M (1999) Chemometrics, Wiley-VCH, NY

    Google Scholar 

  23. Westerhuis JA, de Jong CS, Smilde AK (2001) J Chemom Intell Lab Syst 56:13–25

    Article  CAS  Google Scholar 

  24. Luypaert J, Heuerding S, de Jong CS, Massart DL (2002) J Pharm Biomed Anal 30:453–466

    CAS  PubMed  Google Scholar 

  25. Baldioli M, Servili M, Perretti G, Montadoro GF (1996) J Am Oil Chem Soc 60:1589–1593

    Google Scholar 

  26. Esterbauer H, Koller E, Slee RG, Koster JF (1986) Biochem 239(2):405–409

    CAS  Google Scholar 

Download references

Conflict of interest:

No information supplied

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Cheikhousman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheikhousman, R., Zude, M., Bouveresse, D.JR. et al. Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating. Anal Bioanal Chem 382, 1438–1443 (2005). https://doi.org/10.1007/s00216-005-3286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3286-1

Keywords

Navigation