Skip to main content
Log in

Characterisation of selenium compounds in rye seedling biomass using 75Se-labelling/SDS-PAGE separation/γ-scintillation counting, and HPLC-ICP-MS analysis of a range of enzymatic digests

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, selenium-enriched plant biomass was investigated to evaluate the ability of rye seedlings to take up, and assimilate, inorganic selenium. Two different analytical approaches were used. Electrophoretic separation (SDS-PAGE) of proteins extracted from 75Se-labelled biomass was used to investigate the biotransformation of selenite into organic forms of the element. Ion-pair chromatography coupled with ICP-MS detection was chosen for the analysis of selenium species, enzymatically extracted from the plant biomass. The results of three enzymatic hydrolysis procedures and three sequential enzymatic extractions procedures are compared. The most effective single extraction was proteolysis (using protease type XIV), giving an overall extraction efficiency of 48%. However, for combinations of enzymes, the most effective was cellulase (Trichoderma viride) followed by sequential extraction of the solid pellet using protease type XIV, giving an extraction efficiency of 70%. The complementary data from the electrophoretic fractionation of proteins, and the HPLC separation of Se-species in the proteolytic digests, reveal the existence of large number of selenium-containing compounds in the rye seedling plant biomass. The results showed the complete biotransformation of inorganic selenium into organic forms during germination of the rye seedlings. HPLC-ICP-MS analysis of extracts from the plant biomass did not show the presence of selenate or selenite. At the time of this study, the lack of suitable organic-MS facilities meant that it was not possible to characterise them fully. However, the data does show that a combination of different enzymes, rather than just the commonly-used protease, should be considered when developing an extraction strategy for selenium in different food types to those already reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4a–d
Fig. 5a–c

Similar content being viewed by others

References

  1. Combs GF (2001) Br J Nutr 85:517–547

    CAS  PubMed  Google Scholar 

  2. Wasowicz W, Gromadzinska J, Rydzynski K, Tomczak J (2003) Toxicol Lett 137:95–101

    Article  CAS  PubMed  Google Scholar 

  3. Rayman M (2000) Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  4. Flohe L, Andreesen JR, Brigelius-Flohe R, Maiorino M, Ursini F (2000) IUBMB Life 49:411–420

    CAS  PubMed  Google Scholar 

  5. Patrick L (2004) Altern Med Rev 9(3):239–258

    PubMed  Google Scholar 

  6. Arthur JR, McKenzie RC, Beckett GJ (2003) J Nutr 133:1457S–1459S

    CAS  PubMed  Google Scholar 

  7. Fairweather-Tait SJ (1999) Fresen J Anal Chem 363:536–540

    Article  CAS  Google Scholar 

  8. Hakkarainen J (1993) Norwegian J Agric Sci Suppl 11:21–35

    Google Scholar 

  9. Chassaigne H, Chery CC, Bordin G, Vanhaecke F, Rodriguez AR (2004) J Anal Atom Spectrom 19:85–95

    Article  CAS  Google Scholar 

  10. Sutton KL, Caruso JA (1999) J Chromatogr A 856:243–258

    Article  CAS  PubMed  Google Scholar 

  11. Szpunar J (2000) Analyst 125:963–988

    Article  CAS  PubMed  Google Scholar 

  12. Infante HG, O’Connor G, Rayman M, Wahlen R, Entwisle J, Norris P, Hearna R, Catterick T (2004) J Anal Atom Spectrom 19:1529–1538

    Article  Google Scholar 

  13. Casiot C, Szpunar J, Lobinski R, Point-Gautier M (1999) J Anal Atom Spectrom 14:645–650

    Article  CAS  Google Scholar 

  14. Michalke B, Witte H, Schramel R (2002) Anal Bioanal Chem 372:444–447

    Article  CAS  PubMed  Google Scholar 

  15. Quijano MA, Moreno P, Gutierrez AM, Perez-Conde MC, Camara C (2000) J Mass Spec 35:878–884

    Article  CAS  Google Scholar 

  16. Encinar JR, Sliwka-Kaszynska M, Polatajko A, Vacchina V, Szpunar J (2003) Anal Chim Acta 500:171–183

    Article  CAS  Google Scholar 

  17. Wrobel K, Kannamkumarath SS, Wrobel K, Caruso J (2003) Anal Bioanal Chem 375:133–139

    CAS  PubMed  Google Scholar 

  18. Tan Y, Marshall WD (1997) Analyst 122:13–18

    Article  CAS  Google Scholar 

  19. Dernovics M, Stefanka Zs, Fodor P (2002) Anal Bioanal Chem 372:473–480

    Article  CAS  PubMed  Google Scholar 

  20. Roberge MT, Borgerding AJ, Finley JW (2003) J Agric Food Chem 51:4191–4197

    Article  CAS  PubMed  Google Scholar 

  21. Bryszewska MA, Ambroziak W, Diowksz D, Lewis DJ (2005) Food Addit Contam 22(2):135–214

    Article  CAS  PubMed  Google Scholar 

  22. Chavan JK, Kadam SS (1989) Crit Rev Food Sci Nutr 28(5):401–437

    CAS  PubMed  Google Scholar 

  23. Combs GF (1988) In: Chichester CO, Schweiger BS (eds) Advance in food research. Academic, San Diego, CA, pp 85–113

  24. Brown TA, Shrift A (1982) Biol Rev 57:59–84

    CAS  Google Scholar 

  25. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  26. Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Mol Microb 5:515–520

    CAS  Google Scholar 

  27. Schrauzer G (2000) J Nutr 130:1653–1656

    CAS  PubMed  Google Scholar 

  28. Anderson J (1993) In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulphur nutrition and assimilation in higher plants: regulatory agricultural and environmental aspects. SPB Ac. Publ., The Hague, The Netherlands, pp 49–60

  29. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki T (2002) Proc Natl Acad Sci USA 10:15932–15936

    Article  Google Scholar 

  30. Han X-Z, Hamaker BR (2002) J Cereal Sci 35:109–116

    Article  CAS  Google Scholar 

  31. Darlington HF, Tecsi L, Harris N, Griggs DL, Cantrell IC, Shewry PRJ (2000) J Cereal Sci 32:21–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MAB would like to acknowledge KBN Grant No 6P06G 057 20 and CSL for supporting her work-visits to the UK.

Conflict of interest:

No information supplied

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata A. Bryszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryszewska, M.A., Ambroziak, W., Rudzinski, J. et al. Characterisation of selenium compounds in rye seedling biomass using 75Se-labelling/SDS-PAGE separation/γ-scintillation counting, and HPLC-ICP-MS analysis of a range of enzymatic digests. Anal Bioanal Chem 382, 1279–1287 (2005). https://doi.org/10.1007/s00216-005-3272-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3272-7

Keywords

Navigation